您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 高中数学必修3教案讲义(全)xue
1/33必修3第一章算法初步一、基础精析要点1:算法的一些基本概念(1)算法的概念:算法通常是指按一定规则解决某一类问题的明确和有限的步骤.(2)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.(3)程序框图的三种基本逻辑结构是顺序结构、条件结构、循环结构.(4)算法的描述方式有:自然语言、程序框图、程序语言.练习1:看下面的四段话,其中不是解决问题的算法的是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2-1=0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再由于3+3=6,6+4=10,10+5=15,最终结果为15练习2:算法的有穷性是指()A.算法必须包含输出B.算法中每个步骤都是可执行的C.算法的步骤必须有限D.以上说法均不对练习3:下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用流程图来表示C.同一问题可以有不同的算法D.同一问题不同的算法会得到不同的结果例题1:下列给出的赋值语句中正确的是()A新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆4MB新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆MMC新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆3BAD新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆0xy2/33要点2:算法的三种基本逻辑结构名称内容顺序结构条件结构循环结构程序框图练习4:算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是()A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合要点3:算法的基本语句(1)输入语句、输出语句、赋值语句的格式与功能语句一般格式功能输入语句INPUT“提示内容”;变量输入信息输出语句PRINT“提示内容”;表达式输出常量、变量的值和系统信息赋值语句变量=表达式将表达式的值赋给变量3/33(2)条件语句①IF—THEN格式②IF—THEN—ELSE格式(3)循环语句①UNTIL语句②WHILE语句4/33例题2:如图给出的是求201614121的值的一个程序框图,其中判断框内应填入的条件是()A.i10?B.i10?C.i20?D.i20?练习5:下列程序框图表示的算法输出的结果是?开始021Sni,,1SSn2nn1ii结束是否输出S5/33要点4:辗转相除法与更相减损术求最大公约数(1)辗转相除法:对于给定的两个正整数,用大数除以小数,若余数不为0,则将小数和余数构成新的一对数,继续上面的除法,反复执行此步骤,直到大数被小数除尽,则这时较小的数就是原来两个数的最大公约数.(2)更相减损术:对于给定的两个正整数,若它们都是偶数,则将它们反复除以2(假设进行了k次),直到它们至少有一个不是偶数后,将大数减小数,然后将差和较小的数构成一对新数,继续上面的减法,反复执行此步骤,直到差和较小的数相等,此时相等的数或这个数与约简的数的乘积即为所求两数的最大公约数.例3:分别用辗转相除法和更相减损术求三个数72,120,168的最大公约数.解法1:用辗转相除法先求120,168的最大公约数,因为168120148,12048224,48242所以120,168的最大公约数是24.再求72,24的最大公约数,因为72243,所以72,24的最大公约数为24,即72,120,168的最大公约数为24.解法2:用更相减损术先求120,168的最大公约数,168-120=48,120-48=72,72-48=24,48-24=24所以120,168的最大公约数为24.再求72,24的最大公约数,72-24=48,48-24=2472,24的最大公约数为24,即72,120,168的最大公约数为24.6/33练习6:分别用辗转相除法和更相减损术求两数225与135的最大公约数要点4:秦九韶(shao第二声)算法设1110()nnnnfxaxaxaxa,改写为如下形式:()fx1210(())).nnnaxaxaxaxa设0101,nnvavvxa21232310nnnnvvxavvxavvxa例4:用秦九韶算法计算多项式xxxxf236)(在4x时的值时分别要用多少次乘法和加法?(结论:对于一个n次多项式,至多做n次乘法和n次加法;当最高次项系数不是1时为n次乘法,当最高次项系数是1时为n-1次乘法;当常数项00a时为n次加法,当常数项00a时为n-1次加法。)例5:(2005年高考北京卷理14)已知n次多项式1011()nnnnnPxaxaxaxa,如果在一种算法中,计算0kx(k=2,3,4,…,n)的值需要k-1次乘法,计算30()Px的值共需要9次运算(6次乘法,3次加法),那么计算100()Px的值共需要次运算.下面给出一种减少运算次数的算法:0011(),()()kkkPxaPxxPxa(k=0,1,2,…,n-1).利用该算法,计算30()Px的值共需要6次运算,计算100()Px的值共需要次运算.解析:秦九韶算法适用一般的多项式1011()nnnnnPxaxaxaxa的求值问题.直接法乘法运算的次数最多可到达2)1(nn,加法最多n次.秦九韶算法通过转化把乘法运算的次数减少到最多n次,加法最多n次.答案:65;20.7/33练习7:用秦九韶算法计算多项式362)(23xxxxf在4x时的值时分别要用多少次乘法和加法?练习8:用秦九韶算法计算多项式26)(23xxxxf在4x时的值时分别要用多少次乘法和加法?例6:用秦九韶算法计算多项式654235683512)(xxxxxxf在4x时的值时,3V的值为()A.-144B.-136C.-57D.34练习9:用秦九韶算法计算多项式654323567983512)(xxxxxxxf在4x时的值时,3V的值为()A.-845B.220C.-57D.34要点5:进位制(1)k进制数的基数为k,k进制数是由k10、之间的数字构成的.(2)将十进制的数转化为k进制数的方法是除k取余法.(3)110110(0,0,,)nnnnkaaaaakaaak把进制数化为十进制数的方法为1110()110nnnnknnaaaaakakaka.例7:将下列数进行转换(1))10(3________10202)((2))8(10________101)(解:420(3)(10)(1)10202132323101(2)用8反复去除101,直到商为0止,所得的余数(从末位读起)就是十进制数101的8进制表示8/338101812581401余数所以(10)(8)101145评注:将k进制的数转化为k进制的数的方法是先将k进制的数转化为十进制的数,再将这个数转化为k进制的数.练习10:若(2)(6)(9)111111,210,85abc,试判断,,abc的大小关系,并将c化为7进制的数.二、课后作业1:分别用辗转相除法和更相减损术求三个数72,1562:用秦九韶算法计算多项式xxxxf246)(在3x时的值时分别要用多少次乘法和加法?3:用秦九韶算法计算多项式654225683512)(xxxxxxf在2x时的值时,4V的值为________________4:将下列数进行转换)6(3________10202)(9/33必修3第二章统计一、基础精析要点1:随机抽样(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.(2)系统抽样:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.(3)分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.例1:为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体C.样本是40名学生D.样本容量是40例2:为了了解参加某种知识竞赛的1000名学生的成绩,若采用系统抽样方法较恰当?简述抽样过程.解:(1)随机地将这1000名学生编号为1,2,3,…,1000.(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.练习1:下列抽样不是系统抽样的是()A.从标有1—15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5,i+10(超过15则从1再数起)号入样。10/33B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验。C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止。D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈。练习2:某校高中三年级有1242名学生,为了了解他们的身体状况,准备按1∶40的比例抽取一个样本,那么()A.剔除指定的4名学生B.剔除指定的2名学生C.随机剔除4名学生D.随机剔除2名学生练习3:从2005个编号中抽取20个号码,采用系统抽样的方法,则抽样的分段间隔为()A.99B.99.5C.100D.100.5例3:一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?解:用分层抽样来抽取样本,步骤是:(1)分层:按年龄将150名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为51500100,则在不到35岁的职工中抽125×51=25人;在35岁至49岁的职工中抽280×51=56人;在50岁以上的职工中抽95×51=19人.(3)在各层分别按抽签法或随机数表法抽取样本.(4)综合每层抽样,组成样本.练习4:某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A
本文标题:高中数学必修3教案讲义(全)xue
链接地址:https://www.777doc.com/doc-1749573 .html