您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 二元一次方程组全章期末复习拓展练习
第1页共2页①②期末复习——二元一次方程组复习拓展题一、选择题1.关于x,y的二元一次方程组59xykxyk的解也是二元一次方程2x+3y=6的解,则k的值是()A.k=-34B.k=34C.k=43D.k=-432.如果方程组1xyaxbyc有唯一的一组解,那么a,b,c的值应当满足()A.a=1,c=1B.a≠bC.a=b=1,c≠1D.a=1,c≠13.方程3x+y=7的正整数解的个数是()A.1个B.2个C.3个D.4个4.已知x,y满足方程组45xmym,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x+y=-1C.x+y=9D.x+y=95.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为()A.1122...2211xxxxBCDyyyy6.若2,117xaxbyybxby是方程组的解,则(a+b)·(a-b)的值为()A.-353B.353C.-16D.167.4x+1=m(x-2)+n(x-5),则m、n的值是()A.14nmB.14nmC.37nnD.37nm8.如果方程组1293yxyax无解,则a为()A.6B.-6C.9D.-9二、填空题9.方程mx-2y=x+5是二元一次方程时,则m________.10.若2x2a-5b+ya-3b=0是二元一次方程,则a=______,b=______.11.若已知方程221153axaxaya,则当a=时,方程为一元一次方程;当a=时,方程为二元一次方程.12.a-b=2,a-c=12,则(b-c)3-3(b-c)+94=________.13.若2x5ayb+4与-x1-2by2a是同类项,则b=________.三、解答题14.对于有理数x、y定义新运算:x*y=ax+by+5,其中a,b为常数.已知1*2=9,(-3)*3=2,求a,b的值.15.已知方程组256351648xyxyaxbybxay与方程组的解相同.求(2a+b)2004的值.16.已知x=1是关于x的一元一次方程ax-1=2(x-b)的解,y=1是关于y的一元一次方程b(y-3)=2(1-a)的解.在y=ax2+bx-3中,求当x=-3时y值.17.甲、乙两人同解方程组51542axyxby时,甲看错了方程①中的a,解得31xy,乙看错了②中的b,200620075()410xbay试求的值.18.小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?19.在长为10m,宽为8m的矩形空地中,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示.求小矩形花圃的长和宽.20.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.对方程组解的控制:1.方程组15xyayx有正整数解,则正整数a为多少第2页共2页2.n为何值时,关于x,y的方程组12yxnyx的解满足1x2,且-2y0?3.研究下列方程组的解的个数:(1).342,12yxyx(2).32,12yxyx(3).242,12yxyx你发现了什么规律?(对二元一次方程组解的探究)已知关于x,y的方程组byxyxa5)1(当a,b满足什么条件时,方程组有唯一解,无解,有无数解?整体代入:1.把方程321xy化成用x的式子表示y的形式:__________y。2.若032yx,则yx426________3.若2x-5y=0,且x≠0,则yxyx5656的值是____4.已知y=3xy+x,求代数式2322xxyyxxyy的值.5.已知②①.15232,25cbacba求b的值.方案设计中的二元一次方程(组)1.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人?原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?2.某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备资金如下表:农作物品种每公顷需劳动力每公顷需投入资金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划设备资金投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?3.某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶粉销售,每吨可获取利润2000元.该工厂的生产能力是:若制成酸奶,每天可加工3吨;若制成奶粉,每天可加工1吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?4.某体育彩票经销商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.(1)若经销商同时购进不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完获得手续费最多,应该选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.
本文标题:二元一次方程组全章期末复习拓展练习
链接地址:https://www.777doc.com/doc-1758959 .html