您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 《椭圆的简单几何性质》PPT课件
知识储备案:1.椭圆的定义:到两定点F1、F2的距离之和为常数(大于|F1F2|)的动点的轨迹叫做椭圆。2.椭圆的标准方程是:3.椭圆中a,b,c的关系是:当焦点在X轴上时当焦点在Y轴上时)0(12222babyax)0(12222babxay222cabaF2F1OB2B1A1A2xycb找出a、b、c所表示的线段。△B2F2O叫椭圆的特征三角形。二、椭圆简单的几何性质问题1:指出A1、A2、B1、B2的坐标?问题2:指出椭圆上点的横坐标的范围?问题3:指出椭圆上点的纵坐标的范围?结论:椭圆中-a≤x≤a,-b≤y≤b.椭圆落在x=±a,y=±b组成的矩形中oyB2B1A1A2F1F2cab1、范围:2、椭圆的对称性xx对称轴:x轴、y轴对称中心:原点2、对称性:oyB2B1A1A2F1F2cab从图形上看,椭圆关于x轴、y轴、原点对称。从方程上看:(1)把x换成-x方程不变,图象关于y轴对称;(2)把y换成-y方程不变,图象关于x轴对称;(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。3、椭圆的顶点)0(12222babyax令x=0,得y=?,说明椭圆与y轴的交点?令y=0,得x=?说明椭圆与x轴的交点?*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。a、b分别叫做椭圆的长半轴长和短半轴长。oyB2B1A1A2F1F2cab(0,b)(a,0)(0,-b)(-a,0)123-1-2-3-44y123-1-2-3-44y12345-1-5-2-3-4x12345-1-5-2-3-4x根据前面所学有关知识画出下列图形1162522yx142522yx(1)(2)A1B1A2B2B2A2B1A14、椭圆的离心率e(刻画椭圆扁平程度的量)ace离心率:椭圆的焦距与长轴长的比:叫做椭圆的离心率。[1]离心率的取值范围:[2]离心率对椭圆形状的影响:0e11)e越接近1,c就越接近a,从而b就越小,椭圆就越扁2)e越接近0,c就越接近0,从而b就越大,椭圆就越圆[3]e与a,b的关系:222221ababaace思考:当e=0时,曲线是什么?当e=1时曲线又是什么?222221612:9362,yxxyC1问:对于椭圆C与椭圆:更接近于圆的是。2C标准方程范围对称性顶点坐标焦点坐标半轴长离心率a、b、c的关系22221(0)xyabab|x|≤a,|y|≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.abcea222cab标准方程范围对称性顶点坐标焦点坐标半轴长离心率a、b、c的关系22221(0)xyabab|x|≤a,|y|≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.abcea22221(0)xyabba|x|≤b,|y|≤a同前(b,0)、(-b,0)、(0,a)、(0,-a)(0,c)、(0,-c)同前同前同前222cab(0e1)(e越接近于1越扁)例1已知椭圆方程为9x2+25y2=225,它的长轴长是:。短轴长是:。焦距是:。离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。1068(3,0)(0,4)60解题的关键:1、将椭圆方程转化为标准方程明确a、b192522yx2、确定焦点的位置和长轴的位置54例5电影放映灯泡的反射面是旋转椭圆面的一部分。过对称轴的截口BAC是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上.由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点。已知建立适当的坐标系,求截口BAC所在椭圆的方程。12112,||2.8,||4.5.BCFFFBcmFFcm课本例题练习:已知椭圆的离心率求m的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标。22(3)(0)xmymm3,2e例2求适合下列条件的椭圆的标准方程⑴经过点P(-3,0)、Q(0,-2);⑵长轴长等于20,离心率3/5。⑶一焦点将长轴分成2:1的两部分,且经过点32,4P22194xy解:⑴方法一:设方程为mx2+ny2=1(m>0,n>0,m≠n),将点的坐标方程,求出m=1/9,n=1/4。方法二:利用椭圆的几何性质,以坐标轴为对称轴的椭圆与坐标轴的交点就是椭圆的顶点,于是焦点在x轴上,且点P、Q分别是椭圆长轴与短轴的一个端点,故a=3,b=2,所以椭圆的标准方程为注:待定系数法求椭圆标准方程的步骤:⑴定位;⑵定量2213632xy⑶22110064xy⑵22110064yx或22114529049yx或练习:1.根据下列条件,求椭圆的标准方程。①长轴长和短轴长分别为8和6,焦点在x轴上②长轴和短轴分别在y轴,x轴上,经过P(-2,0),Q(0,-3)两点.③一焦点坐标为(-3,0)一顶点坐标为(0,5)④两顶点坐标为(0,±6),且经过点(5,4)⑤焦距是12,离心率是0.6,焦点在x轴上。2.已知椭圆的一个焦点为F(6,0)点B,C是短轴的两端点,△FBC是等边三角形,求这个椭圆的标准方程。例3:(1)椭圆的左焦点是两个顶点,如果到直线AB的距离为,则椭圆的离心率e=.(3)设M为椭圆上一点,为椭圆的焦点,如果,求椭圆的离心率。22221(0)xyabab1(,0),Fc(,0),(0,)AaBb7b22221xyab12FF、122175,15MFFMFF小结:本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他的两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握数与形的联系。在本节课中,我们运用了几何性质,待定系数法来求解椭圆方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想。(4)P为椭圆上任意一点,F1、F2是焦点,则∠F1PF2的最大值是.13422yx
本文标题:《椭圆的简单几何性质》PPT课件
链接地址:https://www.777doc.com/doc-1775170 .html