您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 2.3变量间的相关关系(教、优秀教案)
个人收集整理仅供参考学习1/132.3变量间地相关关系一、教材分析本节知识内容不多,但分析本节内容,至少有下列特点:1)知识地联系面广,应用性强,概念地真正理解有难度,教学既要承前启后,完成统计必修基础知识地构建;也要知道知识地来龙去脉,提升学生运用统计知识解决实际问题地能力,更要抓住本质,正确理解统计推断地结论.b5E2RGbCAP2)通过典型案例进行教学,使知识形成地过程中具有可操作性,易于创设问题情境,引导学生参与,而学生借助解决问题,通过自主思维活动,会产生感悟、发现,能提出问题,思考交流,不仅能正确、全面地理解基础知识和基本方法,而且能促进、发展学生地统计意识、统计思想.p1EanqFDPw二、教学目标1.通过收集现实问题中两个有关联变量地数据作出散点图,并利用散点图直观认识变量间地相关关系;2.知道最小二乘法地思想,能根据给出地线性回归方程系数公式建立线性回归方程.三、教学重点难点重点:作出散点图和根据给出地线性回归方程系数公式建立线性回归方程.难点:对最小二乘法地理解.四、学情分析本节是一种对样本数据地处理方法,但侧重地是由样本推断总体,其方法是学生初识地、知识地作用也是学生初见地.知识量并不大,但涉及地数学方法、数学思想较充分,同时,在教材中留有供发现地点,设有开放性问题,既具有体验数学方法、数学思想地功能,也具有培养学生从具体到抽象能力、锻炼创造性思维能力地作用.DXDiTa9E3d五、教学方法1.自主探究,互动学习2.学案导学:见后面地学案.3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习RTCrpUDGiT六、课前准备1.学生地学习准备:预习课本,初步把握必须地定义.2.教师地教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案.七、课时安排:1课时5PCzVD7HxA八、教学过程〖复习回顾〗标准差地公式为:______________________________________________________jLBHrnAILg〖创设情境〗1、函数是研究两个变量之间地依存关系地一种数量形式.对于两个变量,如果当一个变量地取值一定时,另一个变量地取值被惟一确定,则这两个变量之间地关系就是一个函数关系xHAQX74J0X2、在中学校园里,有这样一种说法:“如果你地数学成绩好,那么你地物理学习就不会有什么大问题.”按照这种说法,似乎学生地物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间地关系是函数关系吗?LDAYtRyKfE个人收集整理仅供参考学习2/133、“名师出高徒”可以解释为教师地水平越高,学生地水平就越高,那么学生地学业成绩与教师地教学水平之间地关系是函数关系吗?Zzz6ZB2Ltk〖新知探究〗思考:考察下列问题中两个变量之间地关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内地脂肪含量与年龄.这些问题中两个变量之间地关系是函数关系吗?一、相关关系:自变量取值一定时,因变量地取值带有一定随机性地两个变量之间地关系,叫做相关关系.【说明】函数关系是一种非常确定地关系,而相关关系是一种非确定性关系.思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康”地警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起地,所以可以吸烟”地说法对吗?dvzfvkwMI12、某地区地环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣地现象,如果村庄附近栖息地天鹅多,那么这个村庄地婴儿出生率也高,天鹅少地地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子.你认为这样地结论可靠吗?如何证明这个问题地可靠性?rqyn14ZNXI分析:(1)吸烟只是影响健康地一个因素,对健康地影响还有其他地一些因素,两者之间非函数关系即非因果关系;EmxvxOtOco(2)不对,这也是相关关系而不是函数关系.上面提到了很多相关关系,那它们之间地相关关系强还是弱?我们下面来研究一下.二、散点图探究:在一次对人体脂肪含量和年龄关系地研究中,研究人员获得了一组样本数据:其中各年龄对应地脂肪数据是这个年龄人群脂肪含量地样本平均数.思考探究:1、对某一个人来说,他地体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定地规律性.观察上表中地数据,大体上看,随着年龄地增加,人体脂肪含量怎样变化?SixE2yXPq52、为了确定年龄和人体脂肪含量之间地更明确地关系,我们需要对数据进行分析,通过作图可以对两个变量之间地关系有一个直观地印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应地图形吗?6ewMyirQFL年龄23273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6个人收集整理仅供参考学习3/13在平面直角坐标系中,表示具有相关关系地两个变量地一组数据图形称为散点图.3、观察人地年龄地与人体脂肪含量散点图地大致趋势,有什么样地特点?阅读课本85~86P,这种相关关系我们称为什么?还有没有其他地相关关系?它又有怎样地特点?kavU42VRUs三、线性相关、回归直线方程和最小二乘法在各种各样地散点图中,有些散点图中地点是杂乱分布地,有些散点图中地点地分布有一定地规律性,年龄和人体脂肪含量地样本数据地散点图中地点地分布有什么特点?y6v3ALoS89如果散点图中地点地分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.M2ub6vSTnP我们所画地回归直线应该使散点图中地各点在整体上尽可能地与其接近.我们怎么来实现这一目地呢?说一说你地想法.0YujCfmUCw设所求地直线方程为yˆ=bx+a,其中a、b是待定系数.则yˆi=bxi+a(i=1,2,…,n).于是得到各个偏差yi-yˆi=yi-(bxi+a)(i=1,2,…,n)显见,偏差yi-yˆi地符号有正有负,若将它们相加会造成相互抵消,所以它们地和不能代表几个点与相应直线在整体上地接近程度,故采用n个偏差地平方和eUts8ZQVRdQ=(y1-bx1-a)2+(y2-bx2-a)2+…+(yn-bxn-a)2表示n个点与相应直线在整体上地接近程度.记Q=niiiabxy12)(这样,问题就归结为:当a、b取什么值时Q最小,a、b地值由下面地公式给出:051015202530354020253035404550556065年龄脂肪含量个人收集整理仅供参考学习4/13.,)())((1221121xbyaxnxyxnyxxxyyxxbniiniiiniiniii其中x=n1niix1,y=n1niiy1,a为回归方程地斜率,b为截距.求回归直线,使得样本数据地点到它地距离地平方和最小地方法叫最小二乘法.【例题精析】有一个同学家开了一个小卖部,他为了研究气温对热饮销售地影响,经过统计,得到一个卖出地饮料杯数与当天气温地对比表:sQsAEJkW5T摄氏温度-504712151923273136热饮杯数15615013212813011610489937654(1)画出散点图;(2)从散点图中发现气温与热饮杯数之间关系地一般规律;(3)求回归方程;(4)如果某天地气温是2℃,预测这天卖出地热饮杯数.解:(4)当x=2时,y=143.063(四)反思总结,当堂检测.1、求样本数据地线性回归方程,可按下列步骤进行:(1)计算平均数x,y;(2)求a,b;(3)写出回归直线方程.2、回归方程被样本数据惟一确定,对同一个总体,不同地样本数据对应不同地回归直线,所以回归直线也具有随机性..GMsIasNXkA3、对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具线性相关关系,即不存在回归直线,那么所得地“回归方程”是没有实际意义地.因此,对一组样本数据,应先作散点图,在具有线性相关关系地前提下再求回归方程TIrRGchYzgy=-2.3517x+147.77020406080100120140160180-10010203040温度热饮杯数个人收集整理仅供参考学习5/13教师组织学生反思总结本节课地主要内容,并进行当堂检测.设计意图:引导学生构建知识网络并对所学内容进行简单地反馈纠正.(课堂实录)(五)发导学案、布置预习.完成本节地课后练习及课后延伸拓展作业.设计意图:布置下节课地预习作业,并对本节课巩固提高.教师课后及时批阅本节地延伸拓展训练.九、板书设计十、教学反思本课地设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑地地方.课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率地目地.7EqZcWLZNX本节课学习了变量间地相互关系和两个变量地线性相关,以及最小二乘法和回归直线地定义,体会了用最小二乘法解决两个变量线性相关地方法,在解决问题中要熟练掌握求回归系数b、a地公式,精确计算.同时,要注意培养学生地观察分析两变量地关系和抽象概括地能力lzq7IGf02E在后面地教学过程中会继续研究本节课,争取设计地更科学,更有利于学生地学习,也希望大家提出宝贵意见,共同完善,共同进步!zvpgeqJ1hk一、相关关系二、散点图三、线性相关、回归直线方程和最小二乘法例题讲解小结个人收集整理仅供参考学习6/132.3变量间相关关系课前预习学案一、预习目标1.通过收集现实问题中两个有关联变量地数据作出散点图,并利用散点图直观认识变量间地相关关系;2.知道最小二乘法地思想,能根据给出地线性回归方程系数公式建立线性回归方程.二、预习内容1.举例说明函数关系为什么是确定关系?2.一个人地身高与体重是函数关系吗?3.相关关系地概念:4.什么叫做散点图?5.回归分析,(1)求回归直线方程地思想方法;(2)回归直线方程地求法三、提出疑惑同学们,通过你地自主学习,你还有哪些疑惑,请把它填在下面地表格中疑惑点疑惑内容课内探究学案一、学习目标1.通过收集现实问题中两个有关联变量地数据作出散点图,并利用散点图直观认识变量间地相关关系.2.经历用不同估算方法描述两个变量线性相关地过程,知道最小二乘法地思想,能根据给出地线性回归方程系数公式建立线性回归方程.NrpoJac3v1二、学习重难点:重点:作出散点图和根据给出地线性回归方程系数公式建立线性回归方程难点:对最小二乘法地理解.三、学习过程思考:考察下列问题中两个变量之间地关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内地脂肪含量与年龄.这些问题中两个变量之间地关系是函数关系吗?(一)、相关关系:个人收集整理仅供参考学习7/13自变量取值一定时,因变量地取值带有一定随机性地两个变量之间地关系,叫做相关关系.【说明】函数关系是一种非常确定地关系,而相关关系是一种非确定性关系.思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康”地警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起地,所以可以吸烟”地说法对吗?1nowfTG4KI2、某地区地环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣地现象,如果村庄附近栖息地天鹅多,那么这个村庄地婴儿出生率也高,天鹅少地地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子.你认为这样地结论可靠吗?如何证明这个问题地可靠性?fjnFLDa5Zo(二)、散点图探究:在一次对人体脂肪含量和年龄关系地研究中,研究人员获得了一组样本数据:其中各年龄对应地脂肪数据是这个年龄人群脂肪含量地样本平均数.思考探究:1、对某一个人来说,他地体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能
本文标题:2.3变量间的相关关系(教、优秀教案)
链接地址:https://www.777doc.com/doc-1776144 .html