您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 薪酬管理 > 创建“绿色校园”活动方案
《电动力学》复习题库第1页,共37页第一章电磁现象的普遍规律一、主要内容:电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出,所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。完成由普通物理到理论物理的自然过渡。二、知识体系:三、内容提要:1.电磁场的基本实验定律:(1)库仑定律:《电动力学》复习题库第2页,共37页对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)(3)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同。②磁场与它激发的电场间关系是电磁感应定律的微分形式。(4)电荷守恒的实验定律,①反映空间某点与之间的变化关系,非稳恒电流线不闭合。②若空间各点与无关,则为稳恒电流,电流线闭合。稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。2、电磁场的普遍规律—麦克斯韦方程其中:《电动力学》复习题库第3页,共37页1是介质中普适的电磁场基本方程,适用于任意介质。2当,过渡到真空情况:3当时,回到静场情况:4有12个未知量,6个独立方程,求解时必须给出与,与的关系。介质中:3、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:均呈线性关系。向同性均匀介质:,,2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场。4.洛伦兹力公式考虑电荷连续分布,《电动力学》复习题库第4页,共37页单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。说明:①②5.电磁场的边值关系其它物理量的边值关系:恒定电流:6、电磁场的能量和能流能量密度:能流密度:三.重点与难点1.概念:电场强度、磁感应强度、电流密度、极化强度、磁化强度、能流密度。2.麦克斯韦方程、电荷守恒定律、边值关系、极化强度与极化电荷的关系、磁化强度与磁化电流的关系、应用它们进行计算和证明。《电动力学》复习题库第5页,共37页3.电磁场的能量及其传输第二章静电场一、主要内容:应用电磁场基本理论解决最简单的问题:电荷静止或电荷分布不随时间变化,产生的场不随时间变化的静电场问题。本章研究的主要问题是:在给定自由电荷分布及介质和导体分布的情况下如何求解静电场。由于静电场的基本方程是矢量方程,求解很难,并不直接求解静电场的场强,而是通过静电场的标势来求解。首先根据静电场满足的麦克斯韦方程,引入标势,讨论其满足的微分方程和边值关系。在后面几节中陆续研究求解:分离变量法、镜像法和格林函数法。最后讨论局部范围内的电荷分布所激发的电势在远处的展开式。二、知识体系:1.静电场的微分方程:边值关系:静电场的能量:2.静电边值问题的构成:3.静电边值问题的基本解法:《电动力学》复习题库第6页,共37页(1)镜像法(2)分离变量法条件:电势满足拉普拉斯方程:(3)电多极矩(4)格林函数法三、内容提要:1.静电场的电势引入标量函数即静电势后空间两点P,Q电势差:参考点:(1)电荷分布在有限区域,通常选无穷远为电势参考点(2)电荷分布在无限区域不能选无穷远点作参考点,否则积分将无穷大。连续分布电荷:无穷远处为参考点2.电势满足的微分方程泊松方程:其中仅为自由电荷分布,适用于均匀各向同性线性介质。对的区域:电势满足拉普拉斯方程:3.边值关系《电动力学》复习题库第7页,共37页①.两介质界面上边值关系②.导体与介质界面上的边值关系③.导体与导体界面上的边值关系其中是导体的电导率4.静电场的能量用电势表示:注意:①不是静电场的能量密度;是自由电荷密度,而则是空间所有电荷的电势,②只适用于静电场。5.唯一性定理:①均匀单一介质《电动力学》复习题库第8页,共37页当区域V内自由电荷分布已知,满足,若V边界上已知,或V边界上已知,则V内场(静电场)唯一确定。②均匀单一介质中有导体当区域V内有导体存在,给定导体之外的电荷分布,当1或已知,每个导体电势或带电量,则内电场唯一确定。四、.静电边值问题的基本解法:1.镜像法:理论依据:唯一性定理,采用试探解的方法。镜像法:用假想点电荷来等效地代替导体或介质边界面上的未知面电荷分布,然后用空间点电荷和等效点电荷迭加给出空间电势分布。条件:①所求区域内只能有少许几个点电荷(只有点电荷产生的感应电荷才能用点电荷代替。)或是简单的连续分布。②导体边界面形状规则,具有一定对称性。③给定边界条件。要求:①做替代时,不能改变原有电荷分布(即自由点电荷位置、Q大小不能变)。泊松方程不能改变。所以假想电荷必须放在所求区域之外。②不能改变原有边界条件,通过边界条件确定假想电荷的大小和位置。③一旦用了假想等效电荷,不能再考虑边界面上的电荷分布。④坐标系根据边界形状来选择。2.分离变量法:条件:电势满足拉普拉斯方程:①空间处处,自由电荷只分布在某些介质(如导体)表面上,将这些表面视为区域边界,可以用拉普拉斯方程。《电动力学》复习题库第9页,共37页②在所求区域介质中有自由电荷分布,若这个自由电荷分布在真空中,产生的势为已知,则区域V中电势可表示为两部分的和不满足,但表面上的电荷产生的电势使满足,仍可用拉普拉斯方程求解。注意:边值关系还要用而不能用。拉普拉斯方程的通解:轴对称通解:为勒让德函数,…球对称通解:若与均无关,即具有球对称性,则通解为:解题步骤①选择坐标系和电势参考点坐标系选择主要根据区域中分界面形状参考点主要根据电荷分布是有限还是无限②分析对称性,分区域写出拉普拉斯方程在所选坐标系中的通解③根据具体条件确定常数外边界条件:电荷分布有限导体边界可视为外边界,给定,或给定总电荷Q,或给定(接地)一般在均匀场中,:(直角坐标或柱坐标)《电动力学》复习题库第10页,共37页内部边值关系:介质分界面上(表面无自由电荷)3.电多极矩讨论电荷分布在小区域内,而场点又距电荷分布区较远,即lr电势的多极展开:小区域电荷体系在外电场中的相互作用能其中是点电荷在外电场中的相互作用能是电偶极子在外电场中的相互作用能是电四极子在外电场中的相互作用能电偶极子在外电场中受的力《电动力学》复习题库第11页,共37页若外电场均匀:电偶极子在外电场中受的力矩三.重点与难点本章重点:静电势及其特性、分离变量法、镜象法。本章难点:镜象法、分离变量法(柱坐标)、电多极矩。第三章稳恒电流的磁场一、主要内容:在给定自由电流分布及介质分布的情况下如何求解稳恒磁场。由于稳恒磁场的基本方程是矢量方程,求解很难,并不直接求解的稳恒磁场磁感应强度,一般是通过磁场的矢势来求解。在一定条件下,可以引入磁标势及磁标势满足的方程来求解。我们先引入静磁场的矢势,导出矢势满足的微分方程,然后再讨论磁标势及其微分方程,最后讨论磁多极展开。二、知识体系:1.矢势法:基本方程:边值关系:静磁场的能量:《电动力学》复习题库第12页,共37页①能量分布在磁场内,不仅仅是分布在电流区.②不是能量密度2.磁标势法引入磁标势的条件:求解区域内作任意的闭合回路L,闭合回路L内都无电流穿过,即,即引入区域为无自由电流分布的单连通域。基本方程:边值关系:解法:当时,,用分离变量法求解,解法与第二章相同.3.磁矢势多极展开:本章重点:1、矢势的引入和它满足的微分方程、静磁场的能量2、引入磁标势的条件,磁标势满足的方程与静电势方程的比较3、利用磁标势解决具体问题本章难点:利用磁标势解决具体问题第四章电磁波的传播电磁波:随时间变化的运动电荷和电流辐射电磁场,电磁场在空间互相激发,在空间以波动的形式存在,就是电磁波。一、主要内容:研究电磁场在空间存在一定介质和导体的情况下的波动情况;在真空与介质,介质与介质,介质与导体的分界面上,电磁波会产生反射、折射、衍射和衰减等,这些本质上是边值问题。电磁波在空间传播有各种各样的形式,最简单、最基本的波型是平面电磁波。《电动力学》复习题库第13页,共37页二、知识体系:1.自由空间(介质):指,的无限大充满均匀空间.-定态波亥姆霍兹方程基本解:,性质:(1)与的关系:,构成右手螺旋关系(2)与同位相;(3),振幅比为波速(因为相互垂直,)。(4)平面电磁波的能量和能流能量密度:,电场能等于磁场能,能量密度平均值为能流密度:(为方向上的单位矢量)平均值:2.良导体:,基本解:,《电动力学》复习题库第14页,共37页其中。3.电磁波在界面反射和折射4.谐振腔定态波边值问题:在求解中主要用到解为:两个独立常数由激励谐振的信号强度来确定。谐振频率:《电动力学》复习题库第15页,共37页(1)给定一组,解代表一种谐振波型(本征振荡,在腔内可能存在多种谐振波型的迭加);只有当激励信号频率时,谐振腔才处于谐振态。(2)不存在中两个为零的波型,若,则。(3)对每一组值,有两个独立偏振波型,这是因为对于确定的可以分解到任意两个方向。(4)最低频率的谐振波型假定,则最低谐振频率为该波型为(1,1,0)型,,所以,,,为横电磁波。但是在一般情况下,。5.矩形波导管矩形波导管由四个壁构成的金属管,四个面为一般情况下让电磁波沿轴传播,对理想导体:,理想导体边界条件:满足方程:,其解:其中,《电动力学》复习题库第16页,共37页的解由确定截止频率:最低截止频率为:(),();最高截止波长为:,一般把波长的波,称为超短波即微波。本章重点:1、电磁场的波动方程、亥姆霍兹方程和平面电磁波2、反射和折射定律的导出、振幅的位相关系,偏振3、导体内的电磁波特性、良导体条件、趋肤效应4、谐振腔和波导管中电磁波的运动形式本章难点:1、振幅、位相关系2、导体内电磁波的运动第五章电磁波的辐射一、主要内容:本章讨论高频交变电流辐射的电磁场的规律。二、知识体系:其解:《电动力学》复习题库第17页,共37页设电荷、电流分布为随时间做正弦或余弦变化,即:将此式代入推迟势的公式后得到():令则:,如果讨论的区域有关系式:。三、电偶极辐射:当时,,上式可以仅取积分中的第一项,有:,此式代表的是偶极辐射。由此我们得到在条件下偶极辐射的磁感应强度:利用得到偶极辐射的磁感应强度:若选球坐标,让沿轴,则:《电动力学》复习题库第18页,共37页(1)电场沿经线振荡,磁场沿纬线振荡,传播方向、电场方向、磁场方向相互正交构成右手螺旋关系;(2)电场、磁场正比于,因此它是空间传播的球面波,且为横电磁波,在时可以近似为平面波;(3)要注意如果()不能被满足,可以证明电场不再与传播方向垂直,即电力线不再闭合,但是磁力线仍闭合。这时传播的是横磁波(TM波)辐射能流、角分布和辐射功率平均能流密度矢量:平均功率:P==,平均功率与电磁波的频率4次方成正比。重点:电磁势及方程,电偶极辐射场、平均能流、平均功率的计算.难点:达朗贝尔方程的解,辐射场的计算第六章狭义相对论《电动力学》复习题库第19页,共37页主要内容:讨论局限于惯性系的狭义相对论的时空理论,相对论电动力学以及相对论力学一.狭义相对论基本原理:1、相对性原理(伽利略相对性原理的自然扩展)(1)物理规律对于所有惯性系都具有完全相同的形式。(2)一切惯性系都是等价的,不存在绝对参照系。2、光速不变原理真空中光速相对任何惯性系沿任何一个方向大小恒为c,且与光源运动速度无关。二.洛仑兹变换:坐标变换:三.狭义相对论的时空理论:1.同时是相对的:在某一贯性参考系上对准的时钟,在另一相对运动的贯性参考系观察是不对准的。2.运动长度缩短:沿运动方向尺度收缩。其中是物体相对静止系的速度;3.运动时钟延缓:运动物体内部发生的自然过程比静止的钟测到的静止物体内部自然过程经历的时间延缓。《电动力学》复习题库第20页,共37页⑴运动时钟延缓:只与速度有关,与加速度无关;⑵时钟延缓是相对的,但在广义相对论中延缓是绝对的;⑶时钟延缓是时空的另一基本属性,与钟的内部结构无关;⑷
本文标题:创建“绿色校园”活动方案
链接地址:https://www.777doc.com/doc-1778621 .html