您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 天津市某大型商业建筑空调系统能效检测与评价分析
天津市某大型商业建筑空调系统能效检测与评价分析赵靖1,朱能1,唐华2,武涌31天津大学;2天津滨海建筑设计院;3住房和城乡建设部科学技术司摘要本文首先阐述了我国大型公共建筑高能耗的现状和主要原因,以及我国政府对大型公共建筑节能管理的一系列制度设计。然后介绍了作为建筑节能管理第一步的暖通空调系统能效检测与评价的基本方法,并以天津市某一大型商业建筑为例,对其暖通空调系统能耗进行详细的诊断分析,并进一步给出了节能潜力分析及节能改造方案。最后指出我国大型公共建筑高耗能现象严重,应采取有效措施来对建筑用能情况进行监管。暖通空调系统的节能运行能够大大降低建筑能耗。关键词大型公建既有商业建筑节能诊断节能潜力分析空调系统0引言大型公共建筑一般指建筑面积2万㎡以上的办公建筑、商业建筑、旅游建筑、科教文卫建筑、通信建筑以及交通运输用房等。随着我国经济和社会快速发展,大型公共建筑日益增多,高耗能的问题日益突出。据统计,我国大型公共建筑总面积不足城镇建筑总面积的4%,但总能耗却占全国城镇总耗电量的22%,大型公共建筑单位面积年耗电量达到70~300KWh,为普通居民住宅的10~20倍,具有很大的节能潜力[1]。因此,做好大型公共建筑的节能管理工作,对实现“十一五”末我国单位GDP能耗降低20%的节能战略目标具有重要意义。1大型公共建筑节能管理制度设计1.1大型公共建筑高能耗原因分析1.1.1设计阶段能源浪费严重我国大型公共建筑多采用大玻璃幕墙,遮阳隔热性能差,建筑容积率高,造成建筑冷、热负荷偏大、空调期长等原因直接导致了大型公共建筑能耗高的问题。另外,随着经济的发展,建筑设计中追求豪华、气派的陋习日益严重,能源浪费现象严重[1]。1.1.2施工阶段标准执行率低《大型公共建筑节能设计标准》(GB50189-2005)于2005年颁布实施。建设部每年组织的建筑节能专项检查结果显示,在施工阶段标准执行率明显偏低,在2001年仅为2%;2005年为20%;2006年为54%;2007年为71%。一些施工单位不按图纸施工,擅自取消节能设计措施,如取消外墙保温层设计或更改为非保温墙体材料。因此,较低的标准执行率是造成大型公共建筑高耗能问题的另一原因。1.1.3运行阶段缺乏科学管理有好的设计,还需要科学的运行管理。运行管理水平直接影响建筑的实际能耗,对建筑实际的节能情况至关重要。即使完全满足大型公共建筑节能设计标准,采用高能效系统及设备,如果运行中没有很好的管理,也达不到节能效果,会产生“节能建筑不节能”现象[1]。我国大型公共建筑运行管理水平普遍较低,主要原因是缺乏统一的宏观协调管理,业主节能意识不强,运行管理人员对节能管理专业知识和能力欠缺。1.2我国大型公共建筑节能监管制度设计在建设部科技司的统一领导下,我国创新性的提出了大型公共建筑节能监管制度。制度由五项基本制度组成,即能耗统计、能源审计、能效公示、用能定额、超定额加价[2]。以能耗统计制度为数据基础,统计出准确的建筑和建筑能耗的数据信息;以能源审计为技术支撑,对建筑能源利用的合理性作出评价并提出整改方案;以能效公示为核心,达到引起比较、竞争的效果;以用能定额为节能标杆,确定不同气候区、不同功能的建筑在一定时期内的合理用能水平;最后以超定额加价为价格杠杆,提高高耗能的成本,促使高耗能建筑主动加强节能运行管理和节能改造。以此构成一个完备的建筑节能监管系统,运用市场对资源的优化配置作用,推动大型公共建筑节能运行管理和节能改造,实现建筑的节能运行管理,释放潜在的节能量需求,将潜在节能量转变为节能需求,同时起到示范和带动我国全面建筑节能的作用。2建筑节能管理第一步——暖通空调系统能效检测作为建筑节能管理的第一步,暖通空调系统能效检测与评价是进行节能潜力分析及节能改造的基础[3]~[8],方法一般如下:第一,基本信息调查。包括建筑基本信息、系统冷热源、系统形式及主要设备等。第二,系统用能情况分析。根据历年系统的运行记录或帐单,并配合现场实测,对系统的用能状况作出基本的评估。第三,系统诊断分析。从风系统、水系统、系统能效比、室内热环境综合评价等方面对暖通空调系统进行全面的诊断分析。第四,节能潜力分析。下面以天津市某一大型商业建筑为例,具体介绍空调系统能效检测方法。3天津市某大型商业建筑的空调系统能效检测分析3.1基本信息调查3.1.1建筑基本信息该大型商业建筑分为新旧两栋建筑。旧楼始建于1928年,后经多次整修,占地面积2980m2,建筑面积16500m2,共七层,均为商业卖场。新楼1994年竣工投入使用,占地面积3724m2,建筑面积39606m2,地上九层,局部十层,地下一层。地下一层部分为设备用房,部分为餐饮商铺,地上一到八层均为商场,九、十两层为商场办公室。3.1.2系统冷热源电力是该建筑空调系统的唯一能源。采暖系统热源采用外网的集中供热。3.1.3系统形式及主要设备空调系统采用全空气系统形式,冷源形式采用水冷式离心机组提供冷量,新楼采用四台开利机组,两台额定冷量为1570kW,两台为1220kW;旧楼采用两台冷水机组一用一备。新楼空调系统原理图见图1。图1新楼空调系统原理图图2采暖系统原理图冷冻水循环系统,采用一次泵系统,共有四台冷冻水泵,一台冷水机组对应一台冷冻水泵,两台冷量为1570kW的冷水机组对应的冷冻水泵额定流量300m3/h,额定扬程50m;两台冷量为1220kW的冷水机组对应的冷冻水泵额定流量230m3/h,额定扬程也50m;四台水泵的为配用电机型号均为Y280S-4,额定功率均为75kW。冷却水循环系统,采用五台冷却水泵,其中三台的额定流量为400m3/h,扬程为33m,两台的额定流量为300m3/h,扬程为47m,五台水泵的配用电机功率型号均为Y280S-4,额定功率为75kW。冷却水塔为逆流式玻璃钢冷却水塔,风机直径达3800mm,配用电机功率为15kW,共四台。空调风系统,新楼为全空气系统,地下采用一台组合式空调机组,风量为6500m3/h,地上每层南北侧各一台组合式空调机组,风量为6500m3/h的共五台,风量为5600m3/h的共七台,风量为8500m3/h的共4台,总计17台组合式空调机组。旧楼为风机盘管加新风系统,每层采用型号为BFPX15-W吊顶式新风机组,南北侧各一台,共16台。采暖系统热源采用外网的集中供热。新楼空调机组为冬夏两用,冬季由室外管网经换热器得到的二次热水,流经空调机组为室内提供热空气。热水循环系统有三台配用功率均为37KW的清水离心泵提供动力。旧楼采用散热器供暖系统,外网热水经换热器得到的二次热水流经布置在各层的散热器提供热量。有四台水泵,两台配用功率87KW,两台75KW。采暖系统原理图见图2。空调的控制系统,机组控制方面,采用定冷冻水出水温度的控制方法,采用电脑监控各点温度,并控制机组出力达到控制调节的目的。采暖控制系统采用人工调节的方法。3.2建筑用能情况分析根据06年及07年能耗帐单就各类能耗情况做如下分析:该年单位建筑面积耗电量为239.8kWh/m2,其中主要的耗电设备有,空调采暖通风系统、照明系统、插座设施、动力设备等,其中以空调采暖通风系统能耗占的比例最大。单位建筑面积耗电量全年内变化的规律,曲线如图3。全年耗电量随时间有很明显的变化关系,4、5月以及1、12月为全年耗电量的两个谷值,9月耗电量为全年最大。在能耗设备中,照明系统、垂直交通系统以及其他能耗设备的能耗不随月份改变,只有空调采暖通风系统需要依据室外气候的变化来进行启停和调节。该建筑夏季空调系统运行开始时间在4月下旬,结束在10月下旬,期间9月份由于室外天气最热,冷负荷最大,空调系统的能耗也最大,带来总电耗的增加。冬季采暖期需要启用一至三层空调机组供暖,造成冬季电耗的小幅增加。101214161820222426281月2月3月4月5月6月7月8月9月10月11月12月月份单位建筑面积月耗电量kWh/m^22006年2007年单位建筑面积耗电量全年变化曲线图3单位建筑面积耗电量全年变化曲线3.3建筑用能系统诊断分析3.3.1空调风系统新楼采用全空气系统,中央空调覆盖地上八层及地下一层,共17台组合式空调机组,选取具备测试条件的北侧三层到七层共5个空调机房进行测试,测试内容包括过滤器前混合段压力,表冷器后送风段的压力,以及送风风量、回风风量和新风风量。由测试数据计算机组的过滤段及表冷段前后压差,以及空调机组实际送风量与设计风量的偏差,由送风段静压以及送风压力可计算得到风机压头,见表1。表1组合式空调机组性能分析表机组位置三层四层五层六层七层额定风量m3/h5600056000560005600056000实际送风量m3/h2553337627260933225020548风量偏差-54.4%-32.8%-53.4%-42.4%-63.3%混合段静压Pa-439.4-121.8-278.0-198.6-398.0△PPa591.6803.2634.8465.292.8风机压头Pa1156.01134.81154.9699.8562.8三至六层空调机组过滤段及表冷段前后压差过大,分析认为这是由过滤器被灰尘堵塞,或是表冷器表面积灰造成。混合段静压值过大,三层机组高达439.4Pa,是由回风不畅所致,导致回风不畅的原因可能有回风口被杂物堵塞,或是管道中防火排烟阀出故障未完全开启。进一步分析原因需要打开吊顶检查回风管道,但商场吊顶不能拆卸,未能进一步查明原因。风机压头过大,远高于一般的舒适性空调的风机压头,高压头运行不仅造成能耗的增加,也使风机流量减少,三到七层所测的各个空调机组风量都有不同程度的减少。在风量远小于风机额定风量的情况下,室内空气温度仍能满足设计要求,这说明风机的选型偏大,而风道的以及空调机组本身阻力过大也造成了风机流量减小,机组压头增大。3.3.2冷冻水系统冷冻水循环系统当前运行情况下,机组的开启依据商场需要的冷负荷来控制,一般情况下开启1号机组时,对应开启1号水泵;开启2号机组时,对应开启2号水泵;1、2号机组同时运行时,1、2、4号水泵均运行。而4号机组由于开启时会发生喘振,很少开启。测试首先对正常运行状态即1、2号机组开,1、2、4号水泵开启时,运行的状态进行了检测,然后针对4号机组的喘振问题,对机组及水泵在不同的停开机组合情况下进行测试。冷冻水测试内容包括冷冻水泵的流量、扬程以及配用电机功率,运行频率,以及冷冻水的温度,进出口压力。空调系统常处于的运行状态为1、2号冷水机组开启,1、2、4号水泵开启,在这样的运行状态下,测试数据见表2。1、2号冷冻水泵运行状态正常,4号冷冻水泵运行流量偏小。在测试工况下,水泵得工作效率为,1号45.6%,2号为43.4%,4号水泵的工作效率为51.8%。当机组处于正常运行状态时,冷冻水的温差只有3.5℃左右,小于设计的冷水温差5℃,相应的实际冷冻水流量将比设计流量增加30%。表2测试工况下水泵工作参数表水泵编号冷水温差℃流量m3/h扬程mH2O运行频率HZ电机功率kW1#3.662954249.575.492#3.562924149.576.714#――1355650.040.56通过对机组蒸发器进出口压力表的读数,计算得到蒸发器水侧的阻力,1#机组蒸发器阻力约为15mH2O,2#机组蒸发器阻力约为16mH2O,4#机组蒸发器阻力约为15mH2O。1、2号机组的蒸发器设计阻力为5.6mH2O,4号机组的蒸发器设计阻力为8.7mH2O。实际运行阻力远大于设计阻力,为排除流量增大对阻力造成的影响,将实际测试的流量和设计流量对比,1、2号机组的设计流量为270m3/h,根据P=SQ2计算得在实际流量下蒸发器的阻力,1号机组应为6.7mH2O,2号机组为6.5mH2O,因此可以排除是由于实际流量稍大于机组的设计流量而造成了蒸发器压损过大。另一原因是由于机组长期运行导致蒸发器表面有杂物附着,导致蒸发器水阻力过大。针对4号机组的喘振,改变运行状态进行诊断测试,对1、2、4号机组以及1、2、3、4号水泵进行不同的开启关闭的组合,在不同
本文标题:天津市某大型商业建筑空调系统能效检测与评价分析
链接地址:https://www.777doc.com/doc-178487 .html