您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 江苏省扬州市2017届高三(上)期中数学试卷(解析版)
第1页(共20页)2016-2017学年江苏省扬州市高三(上)期中数学试卷一、填空题(共14小题,每小题5分,满分70分)1.sin240°=.2.复数z=i(1﹣i)的虚部为.3.抛物线x2=2py(p>0)的准线方程为y=﹣,则抛物线方程为.4.不等式的解集为.5.已知平行直线l1:x﹣2y﹣2=0,l2:2x﹣4y+1=0,则l1与l2之间的距离为.6.若实数x,y满足条件,则目标函数z=x+2y的最大值为.7.已知向量=(1,m+1),=(m,2),则∥的充要条件是m=.8.已知tan(α+)=3,tanβ=2,则tan(α﹣β)=.9.已知函数f(x)=x+asinx在(﹣∞,+∞)上单调递增,则实数a的取值范围是.10.已知圆C:x2+y2﹣4x﹣2y﹣20=0,直线l:4x﹣3y+15=0与圆C相交于A、B两点,D为圆C上异于A,B两点的任一点,则△ABD面积的最大值为.11.若a>0,b>2,且a+b=3,则使得+取得最小值的实数a=.12.已知函数f(x)=﹣kx无零点,则实数k的取值范围是.13.双曲线﹣=1(a>0,b>0)的右焦点为F,直线y=x与双曲线相交于A、B两点.若AF⊥BF,则双曲线的渐近线方程为.14.已知函数f(x)=x(1﹣a|x|)+1(a>0),若f(x+a)≤f(x)对任意的x∈R恒成立,则实数a的取值范围是.二、解答题(共6小题,满分90分)15.已知函数f(x)=2cos(﹣x)sinx+(sinx+cosx)2.(1)求函数f(x)的单调递增区间;(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求的值.16.函数f(x)=log3(x2+2x﹣8)的定义域为A,函数g(x)=x2+(m+1)x+m.(1)若m=﹣4时,g(x)≤0的解集为B,求A∩B;(2)若存在使得不等式g(x)≤﹣1成立,求实数m的取值范围.第2页(共20页)17.已知圆M:x2+y2﹣2x+a=0.(1)若a=﹣8,过点P(4,5)作圆M的切线,求该切线方程;(2)若AB为圆M的任意一条直径,且•=﹣6(其中O为坐标原点),求圆M的半径.18.如图,某市在海岛A上建了一水产养殖中心.在海岸线l上有相距70公里的B、C两个小镇,并且AB=30公里,AC=80公里,已知B镇在养殖中心工作的员工有3百人,C镇在养殖中心工作的员工有5百人.现欲在BC之间建一个码头D,运送来自两镇的员工到养殖中心工作,又知水路运输与陆路运输每百人每公里运输成本之比为1:2.(1)求sin∠ABC的大小;(2)设∠ADB=θ,试确定θ的大小,使得运输总成本最少.19.已知椭圆C:=1(a>b>0)的右焦点为F,过点F的直线交y轴于点N,交椭圆C于点A、P(P在第一象限),过点P作y轴的垂线交椭圆C于另外一点Q.若.(1)设直线PF、QF的斜率分别为k、k',求证:为定值;(2)若且△APQ的面积为,求椭圆C的方程.20.已知函数f(x)=+x.(1)若函数f(x)的图象在(1,f(1))处的切线经过点(0,﹣1),求a的值;(2)是否存在负整数a,使函数f(x)的极大值为正值?若存在,求出所有负整数a的值;若不存在,请说明理由;(2)设a>0,求证:函数f(x)既有极大值,又有极小值.第3页(共20页)三、解答题(共4小题,满分40分)21.已知矩阵M=的一个特征值为4,求实数a的值.22.某校高一年级3个班有10名学生在全国英语能力大赛中获奖,学生来源人数如表:班别高一(1)班高一(2)班高一(3)班人数361若要求从10位同学中选出两位同学介绍学习经验,设其中来自高一(1)班的人数为ξ,求随机变量ξ的分布列及数学期望E(ξ).23.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,AB=1,PA=2,E为PB的中点,点F在棱PC上,且PF=λPC.(1)求直线CE与直线PD所成角的余弦值;(2)当直线BF与平面CDE所成的角最大时,求此时λ的值.24.已知集合A={a1,a2,…,am}.若集合A1∪A2∪A3∪…∪An=A,则称A1,A2,A3,…,An为集合A的一种拆分,所有拆分的个数记为f(n,m).(1)求f(2,1),f(2,2),f(3,2)的值;(2)求f(n,2)(n≥2,n∈N*)关于n的表达式.第4页(共20页)2016-2017学年江苏省扬州市高三(上)期中数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.sin240°=.【考点】运用诱导公式化简求值.【分析】由诱导公式sin=﹣sinα和特殊角的三角函数值求出即可.【解答】解:根据诱导公式sin=﹣sinα得:sin240°=sin=﹣sin60°=﹣.故答案为:﹣2.复数z=i(1﹣i)的虚部为1.【考点】复数代数形式的乘除运算.【分析】由复数代数形式的乘法运算化简复数z得答案.【解答】解:∵z=i(1﹣i)=i﹣i2=1+i,∴复数z=i(1﹣i)的虚部为:1.故答案为:1.3.抛物线x2=2py(p>0)的准线方程为y=﹣,则抛物线方程为x2=2y.【考点】抛物线的简单性质.【分析】根据抛物线x2=2py(p>0)的准线方程为y=﹣,可知p的值,即可得出抛物线的方程.【解答】解:∵抛物线x2=2py(p>0)的准线方程为y=﹣,∴﹣=﹣,∴p=1,∴抛物线方程为x2=2y.故答案为:x2=2y.4.不等式的解集为{x|x<0或x>1}.【考点】其他不等式的解法.【分析】把不等式的左边移项到右边,通分并利用分式的减法法则计算后转化成乘积的形式,最后根据二次不等式取解集的方法即可求出原不等式的解集.【解答】解:∵,第5页(共20页)∴即,∴等价于x(x﹣1)>0,解得x<0或x>1,∴不等式的解集为{x|x<0或x>1}.故答案为:{x|x<0或x>1}.5.已知平行直线l1:x﹣2y﹣2=0,l2:2x﹣4y+1=0,则l1与l2之间的距离为.【考点】两条平行直线间的距离.【分析】利用平行线间的距离公式计算可得.【解答】解:直线l1:x﹣2y﹣2=0即2x﹣4y﹣4=0∴l1与l2间的距离d==.故答案为:.6.若实数x,y满足条件,则目标函数z=x+2y的最大值为8.【考点】简单线性规划.【分析】首先画出可行域,将目标函数变形为直线的斜截式,利用几何意义求最大值.【解答】解:由题意,可行域如图:目标函数z=x+2y变形为y=xz,由其几何意义得到当此直线经过图中A时z最大,由得到A(4,2),所以z的最大值为4+2×2=8;故答案为:8.第6页(共20页)7.已知向量=(1,m+1),=(m,2),则∥的充要条件是m=﹣2或1.【考点】平面向量共线(平行)的坐标表示.【分析】利用向量共线定理即可得出.【解答】解:∵∥,∴=m(m+1)﹣2=0,解得m=﹣2或1.故答案为:﹣2或1.8.已知tan(α+)=3,tanβ=2,则tan(α﹣β)=﹣.【考点】两角和与差的正切函数.【分析】利用特殊角的三角函数值,两角和的正切函数公式可求tanα的值,由已知利用两角差的正切函数公式即可计算得解tan(α﹣β)的值.【解答】解:∵tan(α+)===3,解得:tanα=,tanβ=2,∴tan(α﹣β)===﹣.故答案为:﹣.9.已知函数f(x)=x+asinx在(﹣∞,+∞)上单调递增,则实数a的取值范围是[﹣1,1].【考点】利用导数研究函数的单调性.【分析】函数在区间单调递增,则导函数在该区间的值大于等于0恒成立,在通过换主元求参数范围.【解答】解:∵函数f(x)=x+asinx在(﹣∞,+∞)上单调递增∴函数f(x)的导函数f′(x)=1+a•cosx≥0在(﹣∞,+∞)上恒成立,令cosx=t,t∈[﹣1,1],问题转化为g(t)=at+1≥0在t∈[﹣1,1]上恒成立,即g(﹣1)≥0,g(1)≥0成立,所以﹣1≤t≤1.故答案为:[﹣1,1].10.已知圆C:x2+y2﹣4x﹣2y﹣20=0,直线l:4x﹣3y+15=0与圆C相交于A、B两点,D为圆C上异于A,B两点的任一点,则△ABD面积的最大值为27.【考点】直线与圆的位置关系.【分析】求出弦长AB,求出圆心到直线的距离加上半径,得到三角形的高,然后求解三角形面积的最大值.【解答】解:⊙C:x2+y2﹣4x﹣2y﹣20=0,即(x﹣2)2+(y﹣1)2=25的圆心(2,1),半径为5.第7页(共20页)圆心到直线l:4x﹣3y+15=0的距离为:=4弦长|AB|=2=6,圆上的点到AB的最大距离为:9.△ADB面积的最大值为:=27故答案为:2711.若a>0,b>2,且a+b=3,则使得+取得最小值的实数a=.【考点】基本不等式.【分析】构造基本不等式的性质即可求解.利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵a>0,b>2,且a+b=3,∴a+b﹣2=1,那么:(+)[a+(b﹣2)]=4+1+(+)≥5+2=9,当且仅当2(b﹣2)=a时即取等号.联立,解得:a=.故答案为:.12.已知函数f(x)=﹣kx无零点,则实数k的取值范围是[﹣2,0).【考点】函数零点的判定定理.【分析】画出函数y=与y=kx的图象,利用函数f(x)=﹣kx无零点,求出实数k的取值范围.第8页(共20页)【解答】解:函数f(x)=﹣kx无零点,也就是=kx没有实数解,在平面直角坐标系中画出:y=与y=kx的图象,如图:函数f(x)=﹣kx无零点,也就是y=与y=kx没有交点.由图象可知k∈[﹣2,0).故答案为:[﹣2,0).13.双曲线﹣=1(a>0,b>0)的右焦点为F,直线y=x与双曲线相交于A、B两点.若AF⊥BF,则双曲线的渐近线方程为y=±2x.【考点】双曲线的简单性质.【分析】求得双曲线的右焦点,将直线y=x代入双曲线方程,求得x2=,则设A(x,),B(﹣x,﹣),=(x﹣c,),=(﹣x﹣c,﹣),由•=0,根据向量数量积的坐标表示,求得c2=x2,由双曲线的方程可知:c2=a2+b2,代入即可求得(b2﹣4a2)(9b2+4a2)=0,则可知b2﹣4a2=0,即可求得b=2a,根据双曲线的渐近线方程可知:y=±x=±2x.【解答】解:由题意可知:双曲线﹣=1(a>0,b>0)焦点在x轴上,右焦点F(c,0),第9页(共20页)则,整理得:(9b2﹣16a2)x2=9a2b2,即x2=,∴A与B关于原点对称,设A(x,),B(﹣x,﹣),=(x﹣c,),=(﹣x﹣c,﹣),∵AF⊥BF,∴•=0,即(x﹣c)(﹣x﹣c)+×(﹣)=0,整理得:c2=x2,∴a2+b2=×,即9b4﹣32a2b2﹣16a4=0,∴(b2﹣4a2)(9b2+4a2)=0,∵a>0,b>0,∴9b2+4a2≠0,∴b2﹣4a2=0,故b=2a,双曲线的渐近线方程y=±x=±2x,故答案为:y=±2x.14.已知函数f(x)=x(1﹣a|x|)+1(a>0),若f(x+a)≤f(x)对任意的x∈R恒成立,则实数a的取值范围是[,+∞).【考点】函数恒成立问题.【分析】依题意,f由(x+a)≤f(x)对任意的x∈R恒成立,在同一坐标系中作出满足题意的y=f(x+a)与y=f(x)的图象,可得x(1+ax)+1≥(x+a)[1﹣a(x+a)]+1恒成立,整理后为二次不等式,利用△≤0即可求得实数a的取值范围.【解答】解:∵f(x)=x(1﹣a|x|)+1==(a>0),∴f(x+a)=(x+a)(1﹣a|x+a|)+1,∵f(x+a)≤f(x)对任意的x∈R恒成立,在同一坐标系中作出满足题意的y=f(x+a)与y=f(x)的图象如下:第10页(共20页)∴x(1+ax)+1≥(x+a)[1﹣a(x+a)]+1恒成立,即x+ax2+1≥﹣a(x2+2ax+a2)+x+a+1,整理得:2x2+2ax+a2﹣1≥0恒成立,∴△=4a2﹣4×2(a2﹣1)
本文标题:江苏省扬州市2017届高三(上)期中数学试卷(解析版)
链接地址:https://www.777doc.com/doc-1802271 .html