您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 24.2.4切线长定理(用)解析
A.OL经过半径的外端并且垂直于这条半径的直线是圆的切线.几何应用:2.与半径垂直.1.经过半径的外端;OA是⊙O的半径OA⊥l于Al是⊙O的切线.切线的判定定理:.OAL切线的性质定理:圆的切线垂直于过切点的半径几何应用:∵L是⊙O的切线,∴OA⊥L新课学习O。ABP过圆外一点可以引圆的几条切线?在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长。·OPAB切线与切线长是一回事吗?它们有什么区别与联系呢?··切线:不可以度量。切线长:可以度量。比一比BOABP思考:已知⊙O切线PA、PB,A、B为切点,把圆沿着直线OP对折,你能发现什么?12请证明你所发现的结论。APOBPA=PB∠OPA=∠OPB证明:∵PA,PB与⊙O相切,点A,B是切点∴OA⊥PA,OB⊥PB即∠OAP=∠OBP=90°∵OA=OB,OP=OP∴Rt△AOP≌Rt△BOP(HL)∴PA=PB∠OPA=∠OPB试用文字语言叙述你所发现的结论证一证PA、PB分别切⊙O于A、BPA=PB∠OPA=∠OPB从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。几何语言:反思:切线长定理为证明线段相等、角相等提供新的方法OPAB切线长定理APOB若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直平分AB证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠OPA=∠OPB∴△PAB是等腰三角形,PM为顶角的平分线∴OP垂直平分ABM试一试APO。B若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.CA=CB证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠OPA=∠OPB∴PC=PC∴△PCA≌△PCB∴AC=BCC探究:PA、PB是⊙O的两条切线,A、B为切点,直线OP交于⊙O于点D、E,交AB于C。BAPOCED(1)写出图中所有的垂直关系OA⊥PA,OB⊥PB,AB⊥OP(3)写出图中所有相等的线段(2)写出图中与∠OAC相等的角∠OAC=∠OBC=∠APC=∠BPCOA=OB=OD=OE,PA-=PB,AC=BC,AE=BE下面是一块三角形的铁皮,如何在它上面截下一块圆形的用料,并且使截下来的圆与三角形的三边都相切?思考:ABC与三条边相切的圆的圆心必须满足什么条件?圆心到三边的距离相等角平分线上的点到角的两边的距离相等三角形的三条角平分线相交于一点,这一点到三条边的距离相等,这一点就是圆心。3.应用新知,迁移拓展1、与三角形各边都相切的圆叫做三角形的内切圆.2、内切圆的圆心是三条角平分线的交点,叫做三角形的内心。·BDEFOCA例2△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.解:设AF=x,则AE=xCD=CE=AC-AE=13-xBD=BF=AB-AF=9-x由BD+CD=BC,可得(13-x)+(9-x)=14解得x=4因此,AF=4,BD=5,CE=9.∵⊙O与△ABC的三边都相切∴AF=AE,BD=BF,CE=CD例题2切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。∵PA、PB分别切⊙O于A、B∴PA=PB,∠OPA=∠OPBOP垂直平分AB切线长定理为证明线段相等,角相等,弧相等,垂直关系提供了理论依据。必须掌握并能灵活应用。课堂小结课堂小结课堂小结课堂小结练习.如图,△ABC中,∠C=90º,它的内切圆O分别与边AB、BC、CA相切于点D、E、F,且BD=12,AD=8,求⊙O的半径r.OEBDCAF·BDEFOCA如图,△ABC的内切圆的半径为r,△ABC的周长为l,求△ABC的面积S.解:设△ABC的内切圆与三边相切于D、E、F,连结OA、OB、OC、OD、OE、OF,则OD⊥AB,OE⊥BC,OF⊥AC.∴S△ABC=S△AOB+S△BOC+S△AOC=AB·OD+BC·OE+AC·OF21212121=l·r设△ABC的三边为a、b、c,面积为S,则△ABC的内切圆的半径r=2Sa+b+c三角形的内切圆的有关计算思考(1)圆的切线和切线长相同吗?(2)什么是三角形的内切圆和内心?课堂小结从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。切线长定理
本文标题:24.2.4切线长定理(用)解析
链接地址:https://www.777doc.com/doc-1811377 .html