您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 圆单元基础测试卷(含答案)
新人教版九年级数学上册圆单元测试卷一.选择题(共10小题,每题3分)1.下列说法,正确的是()A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径2.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cmB.4cmC.5cmD.6cm(2题图)(3题图)(4题图)(5题图)(8题图)3.一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为()A.4B.6C.8D.94.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°5.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25°B.50°C.60°D.30°6.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定7.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是()A.相离B.相交C.相切D.外切8.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,9.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.10.如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()A.12πB.24πC.6πD.36π二.填空题(共10小题,每题3分)11.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.(9题图)(10题图)(11题图)(12题图)12.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为.13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=____(13题图)(14题图)(15题图)(17题图)14.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为.15.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.16.已知一条圆弧所在圆半径为9,弧长为π,则这条弧所对的圆心角是.17.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).18.已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是.19.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是.20.半径为R的圆中,有一弦恰好等于半径,则弦所对的圆心角为.三.解答题(共5小题,每题8分)21.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)请证明:E是OB的中点;(2)若AB=8,求CD的长.22.已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.24.如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,求图中阴影部分的面积.(结果保留π)25.一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积.新人教版九年级数学上册第二十四章圆单元试题参考答案一.选择题(共10小题)1.C2.B3.D4.A5.A6.B7.C8.D9.B10.B二.填空题(共10小题)11.12.50°13.7014.1或515.54°16.50°17.2π18.24π19.20πcm220.60°三.解答题(共5小题)21.(1)证明:连接AC,如图∵直径AB垂直于弦CD于点E,∴,∴AC=AD,∵过圆心O的线CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即:△ACD是等边三角形,∴∠FCD=30°,在Rt△COE中,,∴,∴点E为OB的中点;(2)解:在Rt△OCE中,AB=8,∴,又∵BE=OE,∴OE=2,∴,∴.(21题图)(22题图)(23题图)(24题图)22.证明:连结OC,如图,∵OD∥BC,∴∠1=∠B,∠2=∠3,又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.23.(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8,∴S阴影=4π﹣8.24.解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴∠AOC=∠BOC,∠A=∠B=30°,在Rt△AOC中,∠A=30°,OA=4,∴OC=OA=2,∠AOC=60°,∴∠AOB=120°,AC==2,即AB=2AC=4,则S阴影=S△AOB﹣S扇形=×4×2﹣=4﹣.故阴影部分面积4﹣.25.解:由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长==13,所以圆锥的表面积=π•52+•2π•5•13=90π.
本文标题:圆单元基础测试卷(含答案)
链接地址:https://www.777doc.com/doc-1814578 .html