您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 晶体-准晶体的点群和晶体的空间群-朱祖昌
櫡櫡櫡櫡櫡櫡櫡櫡~櫡櫡櫡櫡櫡櫡櫡櫡~收稿日期:2013-08-26作者简介:朱祖昌(1941-),男,江苏宜兴人,研究员,主要从事相变和材料表面改性等方面的研究工作,已发表论文100余篇。联系电话:13816379552,E-mail:13816379552@126.com、朱祖昌1,任颂赞2,蔡红2,叶俭2,许雯2(1.上海工程技术大学,上海201602;2.上海市机械制造工艺研究所有限公司,上海200070)较全面地阐述了物质的不同状态,晶系空间点阵(包括晶系、布拉菲点阵、晶体结构符号、点群和空间群)的基本概念、种类和相互之间的关系,以及准晶体的定义、结构、点群及其符号等。晶体;准晶体;点阵;点群;空间群TG111.5A1008-1690(2014)02-0014-08PointGroupsofCrystalandQuasi-crystalasWellasSpaceGroupofCrystalZHUZuchang1RENSongzan2CAIHong2YEJian2XUWen21.ShanghaiUniversityofEngineeringScienceShanghai2016022.ShanghaiMachineBuildingTechnologyInstituteCo.Ltd.Shanghai200070AbstractThefollowingpointswereexpoundedinarelativelyall-sidedwayincludingvariousstatesofmaterialsbasicconceptkindandrelationshipofspacelatticeofcrystalsystemssuchascrystalsystemsBravaislatticessymbolsofcrystalstructurespointgroupandspacegroupanddefinitionstructurepointgroupandsymbolofquasi-crystaletc.Keywordscrystalquasi-crystallatticepointgroupspacegroup。、。-Bose-EinstainCondensaleBEC。BEC12001E.A.Cornell、W.KetterleC.E.Weiman。1924N.BoseA.Einstain。-1.7×10-7K。BEC“”。BEC“”BEC。BEC。、、、。、。。。。。。。。11.1、、。。2。。。。·41·《》2014292。360°360°、180°、120°、90°60°1、2、3、4、6。、。m。。i。1.27147、、、、、。Bravais14。17143R24。1。1001<111>11116001。orthorhombic。1714Fig.1SchematicdiagramofunitcellofsevencrystalsystemsandfourteenBraviaslattices·51·《》20142922RFig.2SelectionofvectorofrhombusRunitcellofrhombohedralcrystalsystem1Table1Characteristicsofsevencrystalsystemsa≠b≠cα≠β≠γ≠90°11-abc1-cos2α-cos2β-cos2γ+2cosαcosβcos槡γa≠b≠cα=β=90°≠γ122-abcsinγa≠b≠cα=β=γ=90°322-abca=b≠cα=β=γ=90°144-a2ca=b=cα=β=γ=90°433-a3a=b=cα=β=γ≠90°133-a31-3cos2α+2cos3槡αa=b≠cα=β=90°γ=120°166-0.866a2c1.31。A1B2CsClC4TiO2。25-12。2Pearson、P。3Pearson。1。Fe-CL’2PearsontI2-D174h-I4/mmm。2Table2SymbolsandmeaningforcrystalstructureAE~KBABLCAB2ODAmBnS3PearsonTable3PearsonsymbolsandtheirmeaningPearson*anorthicPaP11monoclinicPmP11CmC22orthorhombicPoP11CoC22FoF44IoI22tetragonalPtP11ItI22cubicPcP11FcF44IcI22rhombohedralRhR11hexagonalPhP11*triclinic1.413-20。。、·61·《》2014292、。。324。4SchenfliesC。ihν。D。dh。S。TO。Hermann-MauguinH-M。12346。“-”1-、2-、3-、4-6-。m44m44mm。1-i2-m3-33+i6-33。。123465632。327、4。4、、13-2124Table4RelationshipamongcrystalsystemsBraviaslatticesymbolspointgroupsymbolsandspacegroupsymbols13-2124①Schenflies②Hermann-MauguinP11-1-C1Ci=S2P1P1-PC2m2/m2m2/mC21-3Cs1-4C2h1-6P2P21C2PmPcCmCcP2/mP21/mC2/mP2/cP21/cC2/cPCFI222222D21-9P222P2221P21212P212121C2221C222F222I222I212121mm2③mm2C2ν1-22Pmm2Pmc21Pcc2Pma2Pca21Pnc2Pmn21Pba2Pna21Pnn2Cmm2Cmc21Ccc2Amm2Aem2④Ama2Aea2④Fmm2Fdd2Imm2Iba2Ima2mmm2m2m2mD2h1-28PmmmPnnnPccmPbanPmmaPnnaPmnaPccaPbamPccnPbcmPnnmPmmnPbcnPbcaPnmaCmcmCmce④CmmmCccmCmme④Ccce④FmmmFdddImmmIbamIbcaImmaPI44C41-6P4P41P42P43I4I414-4-S41-2P4-I4-4m4mC4h1-6P4/mP42/mP4/nP42/nI4/mI41/a422422D41-10P422P4212P4122P41212P4222P42212P4322P43212I422I41224mm4mmD4ν1-12P4mmP4bmP42cmP42nmP4ccP4ncP42mcP42bcI4mmI4cmI41mdI41cd4-2m4-2mD2d1-12P4-2mP4-2cP4-21mP4-21cP4-m2P4-c2P4-b2P4-n2I4-m2I4-c2I4-2mI4-2d4/mmm4m2m2mD4h1-20P4/mmmP4/mccP4/nbmP4/nncP4/mbmP4/mncP4/nmmP4/nccP42/mmcP42/mcmP42/nbcP42/nnmP42/mbcP42/mnmP42/nmcP42/ncmI4/mmmI4/mcmI41/amdI41/acd·71·《》2014292PR33C31-4P3P31P32R33-3-C3i1-2P3-R3-3232D31-7P312P321P3112P3121P3212P3221R323m3mC3ν1-6P3m1P31mP3c1P31cR3mR3c3-m3-2mD3d1-6P3-1mP3-1cP3-m1P3-c1R3-mR3-cP66C61-6P6P61P65P62P64P636-6-C3h1P6-6m6mC6h1-2P6/mP63/m622622D61-6P622P6122P6522P6222P6422P63226mm6mmC6ν1-4P6mmP6ccP63cmP63mc6-m26-m2D3h1-4P6-m2P6-c2P6-2mP6-2c6/mmm6m2m2mD6h1-4P6/mmmP6/mccP63/mcmP63/mmcPFI2323T1-5P23F23I23P213I213m3-③2m3-Th1-7Pm3-Pn3-Fm3-Fd3-Im3-Pa3-Ia3-432432O1-8P432P4232F432F4132I432P4332P4132I41324-3m4-3mTd1-6P4-3mF4-3mI4-3mP4-3nF4-3cI4-3dm3-m③4m3-2mOh1-10Pm3-mPn3-nPm3-nPn3-mFm3-mFm3-cFd3-mFd3-cIm3-mIa3-d①shortfull②H-M③H-Mmm、m3m3m16④17。1.513-21。。。。spacegroup。Фёдоров1889Schenflies。322304。。HermannMauguinH-M。。a2、b2c2a、bc12n14d。、2、c2213c231324c4c24143426c66165c36264c263。S.F.A.Kettle+=16。1、34。H-M。PprimitiveCA·81·《》2014292100B010C001FI。。4H-M+。H-M+mHM。-D32h-PccmP2c2c2m-D184h-I4/mcmI4m2c2mD194h-I41/amdI41a2m2d-O2h-Pn3-nP4n3-2n。2m2mC2、PcC2mC121、P1c1C12m1。O4h-Pn3-mP42n3-2m。4H-MTheInternationalUnionofCrystallography《InternationalTablesforCrystallography》172002。213、、123465632。1984ShechtmanAl-Mn5。132011。1985、Ti1-xvx2Ni。32。槡5+22≈2.6180。5205、8、1012。581012。quasi-crystal、τ=槡5+22。5、8、1012。。285、、、。5、8、101283。3a5、b8、c10、d12e8Fig.3Schematicdiagramsofquasi-crystalplangridofafive-foldbeight-foldcten-folddtwelve-foldsymmetryandequasi-crystalstructureofeight-foldsymmetry·91·《》2014292、、、285。45。5108°、72°144°、36°。890°45°、135°。CrNiSi槡2、槡1+2≈1.4142、2.4142。1036°、144°72°、108°“”槡2+521+槡2+521.6180、2.6180。Al65Cu20Co150.4nm、0.8nm、1.2nm1.6nm。1230°、150°、60°、120°90°槡3、槡1+31.7321、2.7321。IshimasaCrNi12。VNiVNiSi12。5、、、13Table5Symbolsofpointgroupsofquasi-crystalsystem1388-8m8228mm8-2m8mmm1212-12m122212mm12-2m12mmm55-525m5-m1010-10m102210mm10-m210mmm235m35-88-8m8228mm8-2m8m2m2m1212-12m122212mm12-2m12m2m2m55-525m5-2m1010-10m102210mm10-m210m2m2m2352m35-SchenfliesC8S8C8hD8C8νD4dD8hC12S12C12hD12C12νD6dD12hC5C5iD5C5νD5dC10C5hC10hD10C10νD5hD10hIIh。。5、8、1012。19676。TT。SiO2100nm99.9%1。、。3。6
本文标题:晶体-准晶体的点群和晶体的空间群-朱祖昌
链接地址:https://www.777doc.com/doc-1815542 .html