您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 共点力的平衡条件及其应用
共点力的平衡条件及其应用[知识梳理]共点力的平衡共点力力的作用点在物体上的____________或力的____________交于一点的几个力叫做共点力.能简化成质点的物体受到的力可以视为共点力平衡状态物体处于________状态或____________状态,叫做平衡状态.(该状态下物体的加速度为零)平衡条件物体受到的________为零,即F合=____或{ΣFx=Fy=0静态平衡v=0;a=0动态平衡v≠0;a=0思考:物体的速度为零和物体处于静止状态是一回事吗?注:①瞬时速度为0时,不一定处于平衡状态.如:竖直上抛最高点.只有能保持静止状态而加速度也为零才能认为平衡状态.②.物理学中的“缓慢移动”一般可理解为动态平衡。三、共点力作用下物体的平衡条件(1)物体受到的合外力为零.即F合=0其正交分解式为F合x=0;F合y=0(2)某力与余下其它力的合力平衡(即等值、反向)。二力平衡:这两个力大小相等,方向相反,作用在同一直线上,并作用于同一物体(要注意与一对作用力与反作用力的区别)。三力平衡:三个力的作用线(或者反向延长线)必交于一个点,且三个力共面.称为汇交共面性。其力大小符合组成三角形规律。三个力平移后构成一个首尾相接、封闭的矢量三角形;任意两个力的合力与第三个力等大、反向(即是相互平衡)推论:①非平行的三个力作用于物体而平衡,则这三个力一定共点。②几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力(一个力)的合力一定等值反向三力汇交原理:当物体受到三个非平行的共点力作用而平衡时,这三个力必交于一点;说明:①物体受到N个共点力作用而处于平衡状态时,取出其中的一个力,则这个力必与剩下的(N-1)个力的合力等大反向。②若采用正交分解法求平衡问题,则其平衡条件为:FX合=0,FY合=0;求解平衡问题的一般步骤:选对象,画受力图,建坐标,列方程。四、平衡的临界问题由某种物理现象变化为另一种物理现象或由某种物理状态变化为另一种物理状态时,发生转折的状态叫临界状态,临界状态可以理解为“恰好出现”或“恰好不出现”某种现象的状态。平衡物体的临界状态是指物体所处的平衡状态将要发生变化的状态。往往利用“恰好出现”或“恰好不出现”的条件。五、平衡的极值问题极值是指研究平衡问题中某物理量变化情况时出遭到的最大值或最小值。可分为简单极值问题和条件极值问题。【考点解读】考点1、共点力作用下的物体的平衡【例2】如图所示,猎人非法猎猴,用两根轻绳将猴子悬于空中,猴子处于静止状态.以下相关说法正确的是()A.猴子受到三个力的作用B.绳拉猴子的力和猴子拉绳的力相互平衡C.地球对猴子的引力与猴子对地球的引力是一对作用力和反作用力D.人将绳子拉得越紧,猴子受到的合力越大练习1.物体处于平衡状态的条件是()A.物体只有受到大小相等、方向相反、作用在同一直线上的两个力作用时,才处于平衡状态B.物体只受一个力的作用,也可能处于平衡状态C.物体所受的合力为零,一定处于平衡状态D.在共点力作用下的物体,如果所受合力为零,一定处于平衡状态2.某人想用力F竖直向上提起地面上的重物,重物没被提起,下面说法正确的是()A.由于力F小于物体的重力,所以物体所受的合力不等于零B.地面所受的压力大小等于物体的重力和拉力的差值C.物体受重力和地面对物体的支持力是互相平衡的力D.力F和地面所受压力互相平衡考点2、共点力平衡的处理方法1.三力平衡的基本解题方法(1)力的合成、分解法:即分析物体的受力,把某两个力进行合成,将三力转化为二力,构成一对平衡力,二是把重力按实际效果进行分解,将三力转化为四力,构成两对平衡力.(2)相似三角形法:利用矢量三角形与几何三角形相似的关系,建立方程求解力的方法.应用这种方法,往往能收到简捷的效果.2.多力平衡的基本解题方法:正交分解法利用正交分解方法解体的一般步骤:(1)明确研究对象;(2)进行受力分析;(3)建立直角坐标系,建立坐标系的原则是让尽可能多的力落在坐标轴上,将不在坐标轴上的力正交分解;(4)x方向,y方向分别列平衡方程求解.例3如图6所示,在倾角为α的斜面上,放一质量为m的小球,小球被竖直的木板挡住,不计摩擦,则球对挡板的压力是()A.mgcosαB.mgtanαC.mgcosαD.mg例1如图4所示,不计滑轮摩擦,A、B两物体均处于静止状态.现加一水平力F作用在B上使B缓慢右移,试分析B所受力F的变化情况.图9图10【例4】倾角为θ的斜面上有质量为m的木块,它们之间的动摩擦因数为μ.现用水平力F推动木块,如图所示,使木块恰好沿斜面向上做匀速运动.若斜面始终保持静止,求水平推力F的大小.在水平地面上放一木板B,重力为G2=100N,再在木板上放一货箱A,重力为G1=500N,设货箱与木板、木板与地面的动摩擦因数μ均为0.5,先用绳子把货箱与墙拉紧,如图所示,已知tgθ=3/4,然后在木板上施一水平力F,想把木板从货箱下抽出来,F至少应为多大考点三平衡中的临界与极值问题考点解读1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.典例剖析例5物体A的质量为2kg,两根轻细绳b和c的一端连接于竖直墙上,另一端系于物体A上,在物体A上另施加一个方向与水平线成θ角的拉力F,相关几何关系如图9所示,θ=60°.若要使两绳都能伸直,求拉力F的取值范围.(g取10m/s2)思维突破解决极值问题和临界问题的方法(1)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.(2)数学方法:通过对问题的分析,依据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).但利用数学方法求出极值后,一定要依据物理原理对该值的合理性及物理意义进行讨论或说明.跟踪训练2如图10所示,将两个质量均为m的小球a、b用细线相连并悬挂于O点,用力F拉小球a使整个装置处于平衡状态,且悬线Oa与竖直方向的夹角为θ=60°,则力F的大小可能为()A.3mgB.mgC.32mgD.33mgBG2AF1Gθ考点4、动态平衡“动态平衡”是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题.解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”.处理方法.图解法:对研究对象进行受力分析,再根据三角形定则画出不同状态下的力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度变化判断各力的变化情况。.图解法分析动态平衡问题,往往涉及三个力,其中一个力为恒力,另一个力方向不变,但大小发生变化,第三个力则随外界条件的变化而变化,包括大小和方向都变化。解答此类“动态型”问题时,一定要认清哪些因素保持不变,哪些因素是改变的,这是解答动态问题的关键例4如图7所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°.现保持绳子AB与水平方向的夹角不绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是()A.增大B.先减小,后增大C.减小D.先增大,后减小1.如图所示,电灯悬挂于两墙之间,更换绳OA,使连接点A向上移,但保持O点位置不变,则A点向上移时,绳OA的拉力(答案:D)A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大例2:如图所示,把球夹在竖直墙AC和木板BC之间,不计摩擦,球对墙的压力为FN1,球对板的压力为FN2.在将板BC逐渐放至水平的过程中,下列说法中,正确的是()A.FN1和FN2都增大B.FN1和FN2都减小C.FN1增大,FN2减小D.FN1减小,FN2增大思考:2.如图所示,细绳一端与光滑小球连接,另一端系在竖直墙壁上的A点,当缩短细绳小球缓慢上移的过程中,细绳对小球的拉力、墙壁对小球的弹力如何变化?思考:3重G的光滑小球静止在固定斜面和竖直挡板之间。若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1、F2各如何变化?【规律总结】:求解三个力的动态平衡问题,一般是采用图解法,即先做出两个变力的合力(应该与不变的那个力等大反向)然后过合力的末端画方向不变的那个力的平行线,另外一个变力的末端必落在该平行线上,这样就能很直观的判断两个变力是如何变化的ABOF1F2G了,如果涉及到最小直的问题,还可以采用解析法,即采用数学求极值的方法求解.相似三角形法分析动态平衡问题(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。例1、半径为R的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B的距离为h,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A到B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化的情况是()A、N变大,T变小B、N变小,T变大C、N变小,T先变小后变大D、N不变,T变小2、如图甲所示,AC是上端带定滑轮的固定竖直杆,质量不计的轻杆BC一端通过铰链固定在C点,另一端B悬挂一重为G的重物,且B端系有一根轻绳并绕过定滑轮A.现用力F拉绳,开始时∠BCA>90°,使∠BCA缓慢减小,直到杆BC接近竖直杆AC.此过程中,杆BC所受的力(A)A.大小不变B.逐渐增大C.逐渐减小D.先增大后减小陷阱题--相似对比题1、如图所示,硬杆BC一端固定在墙上的B点,另一端装有滑轮C,重物D用绳拴住通过滑轮固定于墙上的A点。若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A点稍向下移,则在移动过程中(C)A.绳的拉力、滑轮对绳的作用力都增大B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变2、如图所示,竖直杆CB顶端有光滑轻质滑轮,轻质杆OA自重不计,可绕O点自由转动OA=OB.当绳缓慢放下,使∠AOB由00逐渐增大到1800的过程中(不包括00和180°.下列说法正确的是(CD)A.绳上的拉力先逐渐增大后逐渐减小B.杆上的压力先逐渐减小后逐渐增大C.绳上的拉力越来越大,但不超过2GD.杆上的压力大小始终等于GACB
本文标题:共点力的平衡条件及其应用
链接地址:https://www.777doc.com/doc-1830165 .html