您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 矩形隧道掘进机国内外概况和发展趋势
11.1国内外概况和发展趋势目前世界上绝大多数盾构断面均为标准的圆形,因此我们将非圆形断面盾构称“异形断面盾构”。从历史上看,异形断面盾构的断面形式包括矩形(圆角矩形)、多圆相交的并列圆形、多段弧线相切围合形(日本称复合圆形)。本课题总体设计所选择的就是4段圆弧相切围合的形状,如图3所示。其外观接近椭圆,但数学方程式并非椭圆,我们将其命名为“类矩形”。图3:类矩形盾构衬砌结构1.1.1异形断面盾构的重生由法国人MarcIsambardBrunell(1825年)建造的人类历史上第一台盾构机就是矩形断面的,如图4所示。因为对于使用功能而言,矩形的断面使用效率是最高的,而且从当时掌子面人工开挖的方式看来说,矩形断面最有利于挖掘工人的布置(由于当时图4历史上第一台盾构机2施工能力的限制。1843年,采用这台11m宽、6m高的矩形盾构机完成了396m长的泰晤士河隧道,开创了盾构法隧道的新天地。由于当时结构设计和施工技术的局限,该隧道的衬砌为砖砌双联拱结构,与盾构外形并不匹配。随着技术的发展,自纽约PneumaticTransit隧道(AlfredElyBeach,1870)起,圆形衬砌结构由于受力合理迅速取代了矩形断面,见图5(a);1890年,连通美国与加拿大边境的St.Clair铁路隧道盾构首次采用液压拼装机面,见图5(b);1926年伦敦地铁首次采用了电驱动大刀盘切削正面土体,实现了全断面机械化开挖,见图5(c)。从此,圆形盾构由于衬砌结构经济性好,便于实现机械化开挖和衬砌拼装,迅速成为主流,矩形盾构在大约100年的时间里成为被遗忘的技术。(a)(b)(c)20世纪90年代以后,随着日本城市逐步由功能优先的现代化建设转向人居为本的后现代化建设,需要在本已拥挤的地下空间中建设地铁,地下化铁路,共同沟,地下道路等,由于《日本民法典》规定50米深度以内地下空间属于地面物业业主所有(2001年修正案),往往面临狭小的道路无法布置双线隧道的问题,即使开发出40cm极小间距施工的盾构技术也无济于事,唯一的办法是将两根隧道合为一体。90年代,此类隧道多采用双圆/多圆断面,但这种形式一般需设中柱或采用繁琐的结构托换/置换工艺,空间仍有浪费。因此,90年代中期以后,随着异形断面刀盘技术的成熟,断面利用效率更高,结构形式更简洁的类矩形盾图5:早期盾构技术沿革3构逐步取代了双圆/多圆盾构。2005年之后,已经检索不到日本双圆盾构的施工案例。上海于2002年引进了日本的双圆盾构技术,并用于轨道交通8号线、6号线、和2号线东延伸段施工。大部分施工效果良好,但也发现其虽然能够达到较高的环境保护标准,但是控制技术相对复杂,对施工管理要求较高,隧道空间使用弹性不大,泵房施工繁琐。台湾也引进了此类盾构,评价与此类似。目前,尚无新的双圆盾构应用计划。自1994年至今,日本共研发矩形和复合圆形(类矩形)盾构14种,见附表1所示。其中10、神奈川6号川崎线盾构为MMST工法所用的超前支护盾构,其主隧道断面为矩形,但超前支护盾构的本质为小型并列多圆盾构,虽然算作矩形盾构,但技术特征与使用方法差异很大。值得指出的是,目前研发异形断面盾构并付诸实际应用的只有我国和日本。究其原因还是由于东西方城市发展的模式的差异导致市场需求的差异。除纽约外,美国大多数城市结构比较疏散,地下空间开发的强度并不高;欧洲城市往往面临及其严格的古建筑保护法规,城市核心区地下工程总量也不大,更加趋向于建设图2日本并列圆形盾构4新城。附表1:日本矩形/复合圆形盾构一览表序号工程图片尺寸/m类型/刀盘机长/m年份1習志野市菊田川2号幹線管渠建設工事3.98×4.38土压平衡/偏心多轴6.0519942光辉大街地下通道建设工程7.81×4.98土压平衡/摆动仿形刀盘6.5519973鹿儿岛市草牟田排水管道改建工2.35╳2.95土压平衡/偏心多轴19984大堀川右岸第8号雨水幹線4.52×3.92泥水平衡/滚筒刀盘19995宫城县盐灶市雨水干线3.40×1.70敞开/胸板支护20006京都市今出川分水管道改建4.30×4.90土压平衡/仿形刀盘20017京都市地下鉄東西線六地蔵北工区6.87×10.24土压平衡/摆动仿形刀盘9.33200258横断石田地下人行通道建设工程3.83×4.28土压平衡/行星刀盘7.36520039试验机4.8×2.15土压平衡/双行星刀盘200510神奈川6号川崎线*用于大断面隧道周边超前支护3.9×8.8(卧式)7.85×3.19(立式)土压平衡/普通刀盘10.09(卧式)9.72(立式)200711国道20号新宿地下步行道工程7.82×4.72敞开式200812东京地铁副都心线新千驮~明治神宫前~涩谷区间9.7×8.4土压平衡/仿形刀盘200813东京私铁東急東横線渋谷~代官山駅区间地下化10.300X7.1土压平衡/APORO刀盘8.95200914东京相模纵贯川尻隧道工程8.24×11.96敞开式201115东京地铁有乐町线小竹向原~千川联络线6.8X5.7土压平衡/行星刀盘201261.1.2日本矩形盾构主要关键发展趋势由于建设体制和计价方式不同,日本异形断面盾构技术发展体现出高度的灵活性和针对性,基本每一款异形断面盾构都紧密结合相应的工程项目量身定做,在二十余年的发展过程中取得了很多独树一帜的技术,其中最为关键的两项是异形全断面切削技术和异形衬砌结构机械化拼装技术。1)异形全断面切削技术除了部分应用于软岩和自立性硬土的盾构采用敞开式开挖以外,日本所有应用于软土地区的异形断面盾构都采用了全断面切削技术,从未采用过以往用于小直径盾构的多刀盘部分切削方案,见附图6。这是由于在软土中,部分切削意味着正面有挤压效应,产导致切口前方隆起、通过后沉降。这一问题往往会被误认为盾壳背土,采取错误的措施,更加剧了地层的扰动与沉降。图6:多刀盘部分断面切削方案表2为日本目前矩形盾构所用过的主要切削方式。表2矩形盾构主要切削方式序号类型形式适用地质适用断面1横轴滚动多刀盘软岩/硬土矩形2偏心切削偏心多轴刀盘软土多种形状3行星刀盘矩形4APORO刀盘多种形状5扩展切削圆周仿形刀盘软土6摆动仿形刀盘其中“偏心多轴(DPLEX)刀盘”是在数台驱动轴的前端偏心支承切削器,当按同一方向旋转驱动轴时,切削器机架作平行环运动,以此掘削和这个切削器形状大致相似的隧道断面。因此,只要变换切削器机架的形状,就可以筑造出矩形、椭圆形、马蹄形、带有突起的圆形以及圆环形等多种多样化断面的隧道。如图1.2.1-1所示。7图1.2.1-1掘削机构模式及实体盾构机图“阿波罗刀头(AllPotentialRotaryCutter)”由刀盘、摇动构架、公转圆筒三部分组成。如图1.2.1-2所示。在刀头高速旋转(自转)的同时,通过摇动构架及公转圆筒的旋转使刀盘在所要求的轨迹上移动(使其公转)进行任意断面的掘削。图1.2.1-2刀盘旋转及轨迹示意图“仿形刀盘”在旋转时进行伸缩(辐条6根中的4根),来切削复合圆形断面。此外,随着伸缩刀盘的伸缩产生土仓内容积的变动,为了防止开挖面土压平衡的失衡,在2处安装了土压变动控制装置。如图1.2.1-3所示。图1.2.1-3仿形刀盘的配置图及实体盾构机图磨盘式偏心轴8仿形刀盘也有采用千斤顶驱动的摆动刀盘方案,其特点是低成本,见图1.2.1-4所示。图1.2.1-4摆动仿形刀盘的配置图及实体盾构机图2)机械化拼装技术普通盾构断面为圆形,拼装机回转与拼装位置是同心圆,所需径向行程一般较小,而矩形或类矩形断面无法按同心布置,需要大得多的工作范围。同时,拼装机的设计还必须考虑中盾部位螺旋机、铰接等其它系统的布置,对于大断面矩形盾构而言,单块管片的重量在机器人设计领域也是超出一般数量级的,而其定位精度则要求相当。图1.2.1-5几种日本拼装机专利图日本对于异形断面的拼装机有近10种专利方案,如图1.2.1-5所示,但投入使用的大致有三种类型:(1)加大部分自由度行程的传统拼装机在扁平的异形断面盾构中,在传统拼装机的加设机械手平移结构,使之“够得到”角部。机构原理和工作方式如图1.2.1-6、图1.2.1-7所示。此类拼装机9在常规拼装机上略作改动即可,但是受基本结构限制,单机工作范围无法扩展太多。图1.2.1-6矩形盾构的拼装机图1.2.1-7矩形管片的拼装顺序实例此类拼装机有一个变种,成为立柱式拼装机。其基本构想是将传统拼装机的回转盘体缩小,安装在盾体内的立柱上,回转盘体可以沿立柱上下移动,从而大幅度提高垂直方向行程,如图1.2.1-5右下图所示,日本相关专利公开号为1994-330693。此方案结构轻巧简单,但对盾构机总体布置不利,螺旋机出口只能布置在立柱之间,不利于高效施工。对于设立柱的矩形盾构,空间更加难以满足要求。(2)轨道式拼装机针对矩形管片的特点,日本企业还设计了新型管片拼装装置,其设置了和盾10构机开挖面形状相似的运行轨道,在轨道上运作的拼装装置一边抓取管片一边完成拼装。装置T字断面形状的运行轨道由上下左右的导航滚轮夹持,并与轨道上的齿条实现咬合来完成行驶。如图1.2.1-6、图1.2.1-7所示。图1.2.1-6拼装装置概要图图1.2.1-7T字断面形状的运行轨道在实际运用中,拐角部管片与平行管片的重心抓取位置存在巨大差异,但是各动作都能达到要求。如图1.2.1-8所示。图1.2.1-8拼装管片情况这一类型拼装机动作比较简单,但是难以在当中空间设置双螺旋机排土,对于总体方案是不利的。日本也仅用于东京相模纵贯川尻隧道工程的敞开式盾构。图1.2.1-9串联式机械臂(3)串联式机械臂11在国道20号新宿地下步行道工程中(2008年),日立采用了一种新型的串联机械臂取代了传统拼装机的各自由度并联的机械臂,如图1.2.1-9所示。此类拼装机具有工作幅度范围大,结构刚度大,容易与总体布置协调等优点,是一种非常有潜力的异形断面盾构拼装机方案。但它的确定是无论是垂直、水平运动,还是径向运动,精确定位都必须通过盘体回转与大、小臂回转三轴联动来实现,人工操纵非常繁琐,若采用三轴联动控制则难度很大。在该工程中,由于掘进长度很短,拼装机完全是依靠人工控制的。3)轨道交通工程的应用案例日本的矩形盾构法应用于轨道交通工程的案例共有4个,其中包括:京都地铁东西线醍醐至六地藏延伸工程(2002)和东京地铁副都心线新千驮~明治神宫前~涩谷区间(2008)、东京私铁東急東横線渋谷~代官山駅区间地下化工程(2009)、东京地铁有乐町线小竹向原~千川联络线工程(2012)。其中京都地铁东西线醍醐至六地藏延伸工程不仅是第一例矩形盾构施工轨道交通单峒双线的工程,而且还首次实现了矩形盾构施工无立柱的渡线段,展示了充分展示了矩形盾构技术的发展潜力。京都地铁东西线醍醐至六地藏延伸工程矩形隧道断面外径为9.9×6.5m,适应东京地铁东西线所用的车辆双线运营。该区间是在道路宽度为15m狭窄路况且交通流量大、地下有外径3.2m下水道管线以及引水管大规模埋设物的外环线下进行的工程。隧道总长753.2m,其中道岔部分(crossoversection)57m,渡线部分(transitionsection)5m,一般行车部分(runningtracksection)691.2m。衬砌管片外尺寸9.9×6.5m。如图1.2.1-9所示。12图1.2.1-9隧道横断面图工程采用了小松设计制造的加泥式土压平衡矩形盾构机,刀盘为摆动式(WaggingCutter)。如图1.2.1-10所示,刀盘在一定的角度内边进行摆动边进行掘进的盾构;其通过兼用强力超挖刀,就能运用到各种掘削断面形状中。图1.2.1-10辐条伸缩摆动矩形盾构摆动掘削方式由介入转矩臂的液压千斤顶将刀盘在95°范围内进行摆动。与以往由马达与齿轮驱动的高精度结构相比,由液压千斤顶、连接环及销子构成的驱动部,结构相对简单化。在主辐条未能掘削区域,则采用内置的液压千斤顶伸缩式仿形刀进行掘削。13仿形刀将配合刀盘摆动角度的液压千斤顶进行伸缩,并由其前端的刀头沿着盾构壳体外形线进行掘
本文标题:矩形隧道掘进机国内外概况和发展趋势
链接地址:https://www.777doc.com/doc-1834688 .html