您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 整式的乘法与因式分解练习题
第1页(共14页)整式的乘法与因式分解一.选择题(共16小题)1.下列运算正确的是()A.||=B.x3•x2=x6C.x2+x2=x4D.(3x2)2=6x42.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a43.若a+b=3,a2+b2=7,则ab等于()A.2B.1C.﹣2D.﹣14.已知x+y=﹣5,xy=3,则x2+y2=()A.25B.﹣25C.19D.﹣195.若4a2﹣kab+9b2是完全平方式,则常数k的值为()A.6B.12C.±12D.±66.下列运算中正确的是()A.(x4)2=x6B.x+x=x2C.x2•x3=x5D.(﹣2x)2=﹣4x27.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<NB.M>NC.M=ND.不能确定8.(﹣am)5•an=()A.﹣a5+mB.a5+mC.a5m+nD.﹣a5m+n9.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12B.p=﹣1,q=12C.p=7,q=12D.p=7,q=﹣1210.(xn+1)2(x2)n﹣1=()A.x4nB.x4n+3C.x4n+1D.x4n﹣111.下列计算中,正确的是()A.a•a2=a2B.(a+1)2=a2+1C.(ab)2=ab2D.(﹣a)3=﹣a312.下列各式中不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(﹣x﹣y)C.(﹣x﹣y)(x﹣y)D.(x+y)(﹣x+y)13.计算a5•(﹣a)3﹣a8的结果等于()第2页(共14页)A.0B.﹣2a8C.﹣a16D.﹣2a1614.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3B.﹣1C.1D.515.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为()A.b=3,c=﹣1B.b=﹣6,c=2C.b=﹣6,c=﹣4D.b=﹣4,c=﹣616.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b2二.填空题(共7小题)17.分解因式:x2﹣1=.18.分解因式:2x3﹣8x=.19.分解因式:3ax2﹣6axy+3ay2=.20.分解因式:m3﹣4m2+4m=.21.x2+kx+9是完全平方式,则k=.22.化简:(﹣2a2)3=.23.因式分解:y3﹣4x2y=.三.解答题(共3小题)24.分解因式:(1)(a2+b2)2﹣4a2b2(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.25.已知,求的值.26.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.第3页(共14页)第4页(共14页)整式的乘法与因式分解参考答案与试题解析一.选择题(共16小题)1.下列运算正确的是()A.||=B.x3•x2=x6C.x2+x2=x4D.(3x2)2=6x4【分析】分别利用绝对值以及同底数幂的乘法运算法则、合并同类项、积的乘方运算法则分别化简求出答案.【解答】解:A、|﹣1|=﹣1,正确,符合题意;B、x3•x2=x5,故此选项错误;C、x2+x2=2x2,故此选项错误;D、(3x2)2=9x4,故此选项错误;故选:A.【点评】此题主要考查了绝对值以及同底数幂的乘法运算、合并同类项、积的乘方运算等知识,正确掌握运算法则是解题关键.2.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.【点评】本题主要考查幂的运算和整式的加法,掌握同类项的定义和同底数幂相乘、幂的乘方法则是解题的关键.3.若a+b=3,a2+b2=7,则ab等于()第5页(共14页)A.2B.1C.﹣2D.﹣1【分析】根据完全平方公式得到(a+b)2=9,再将a2+b2=7整体代入计算即可求解.【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.4.已知x+y=﹣5,xy=3,则x2+y2=()A.25B.﹣25C.19D.﹣19【分析】把x2+y2利用完全平方公式变形后,代入x+y=﹣5,xy=3求值.【解答】解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.【点评】本题的关键是利用完全平方公式求值,把x+y=﹣5,xy=3当成一个整体代入计算.5.若4a2﹣kab+9b2是完全平方式,则常数k的值为()A.6B.12C.±12D.±6【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:∵4a2﹣kab+9b2是完全平方式,∴﹣kab=±2•2a•3b=±12ab,∴k=±12,故选:C.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.第6页(共14页)6.下列运算中正确的是()A.(x4)2=x6B.x+x=x2C.x2•x3=x5D.(﹣2x)2=﹣4x2【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、(x4)2=x8,错误;B、x+x=2x,错误;C、x2•x3=x5,正确;D、(﹣2x)2=4x2,错误;故选:C.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.7.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<NB.M>NC.M=ND.不能确定【分析】根据多项式乘多项式的运算法则进行计算,比较即可得到答案.【解答】解:M=(x﹣3)(x﹣7)=x2﹣10x+21,N=(x﹣2)(x﹣8)=x2﹣10x+16,M﹣N=(x2﹣10x+21)﹣(x2﹣10x+16)=5,则M>N.故选:B.【点评】本题考查的是多项式乘多项式,掌握多项式乘以多项式的法则是解题的关键.8.(﹣am)5•an=()A.﹣a5+mB.a5+mC.a5m+nD.﹣a5m+n【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加计算即可.【解答】解:(﹣am)5•an=﹣a5m+n.故选:D.第7页(共14页)【点评】本题考查幂的乘方的性质和同底数幂的乘法的性质,熟练掌握运算性质是解题的关键.9.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12B.p=﹣1,q=12C.p=7,q=12D.p=7,q=﹣12【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p、q的值.【解答】解:由于(x﹣3)(x+4)=x2+x﹣12=x2+px+q,则p=1,q=﹣12.故选:A.【点评】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.10.(xn+1)2(x2)n﹣1=()A.x4nB.x4n+3C.x4n+1D.x4n﹣1【分析】根据幂的乘方法计算.【解答】解:(xn+1)2(x2)n﹣1=x2n+2•x2n﹣2=x4n.故选:A.【点评】本题主要考查了幂的乘方与积的乘方,注意把各种幂运算区别开,从而熟练掌握各种题型的运算.11.下列计算中,正确的是()A.a•a2=a2B.(a+1)2=a2+1C.(ab)2=ab2D.(﹣a)3=﹣a3【分析】根据同底数幂的乘法法则对A进行判断;根据完全平方公式对B进行判断;根据幂的乘方与积的乘方对C、D进行判断.【解答】解:A、a•a2=a3,所以A选项不正确;B、(a+1)2=a2+2a+1,所以B选项不正确;C、(ab)2=a2b2,所以C选项不正确;D、(﹣a)3=﹣a3,所以D选项正确.故选:D.第8页(共14页)【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了同底数幂的乘法以及幂的乘方与积的乘方.12.下列各式中不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(﹣x﹣y)C.(﹣x﹣y)(x﹣y)D.(x+y)(﹣x+y)【分析】根据公式(a+b)(a﹣b)=a2﹣b2的左边的形式,判断能否使用.【解答】解:A、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,A正确;B、两个括号中,﹣x相同,含y的项的符号相反,故能使用平方差公式,B错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C错误;D、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D错误;故选:A.【点评】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.13.计算a5•(﹣a)3﹣a8的结果等于()A.0B.﹣2a8C.﹣a16D.﹣2a16【分析】先根据同底数幂相乘,底数不变指数相加计算,再合并同类项.【解答】解:a5•(﹣a)3﹣a8=﹣a8﹣a8=﹣2a8.故选:B.【点评】同底数幂的乘法的性质:底数不变,指数相加.合并同类项的法则:只把系数相加减,字母与字母的次数不变.14.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3B.﹣1C.1D.5【分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每第9页(共14页)一项,再把所得的积转换成以m+n,mn为整体相加的形式,代入求值.【解答】解:∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n),=1﹣(m+n)+mn,=1﹣2﹣2,=﹣3.故选:A.【点评】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.15.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为()A.b=3,c=﹣1B.b=﹣6,c=2C.b=﹣6,c=﹣4D.b=﹣4,c=﹣6【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:由多项式2x2+bx+c分解因式为2(x﹣3)(x+1),得2x2+bx+c=2(x﹣3)(x+1)=2x2﹣4x﹣6.b=﹣4,c=﹣6,故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.16.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b2【分析】根据两数的符号相同,所以利用完全平方和公式计算即可.【解答】解:(﹣a﹣b)2=a2+2ab+b2.故选:C.【点评】本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.二.填空题(共7小题)17.分解因式:x2﹣1=(x+1)(x﹣1).第10页(共14页)【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了平方差公式分解因式的知识.题目比较简单,解题需细心.18.分解因式:2x3﹣8x=2x(x﹣2)(x+2).【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.19.分解因式:3ax2﹣6axy+3ay2=3a(x﹣y)2.【分析】先提取公因式3a,再对余下的多项式利
本文标题:整式的乘法与因式分解练习题
链接地址:https://www.777doc.com/doc-1838678 .html