您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 最新北师版八年级上册一次函数提高考试试题2
最新北师版八年级上册一次函数提高考试试题21/4一次函数试题21、已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为:()A、y=2x-14B、y=-x-6C、y=-x+10D、y=4x2、在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,-3),(-4,6)B.(-2,3),(4,6)C.(-2,-3),(4,-6)D.(2,3),(-4,6)3、在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为()A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)4、点A(1x,1y)和点B(2x,2y)在同一直线ykxb上,且0k.若12xx,则1y,2y的关系是:()A、12yyB、12yyC、12yyD、无法确定.5、若函数y=kx+b的图象如图所示,那么当y0时,x的取值范围是:()A、x1B、x2C、x1D、x26、如图4,若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A、B、C、D、7、一次函数y=kx+b的图象如图6所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=-1D.y=-18、若直线y=-2x-4与直线y=4x+b的交点在第三象限,则b的取值范围是()A-4<b<8B.-4<b<0C.b<-4或b>8D.-4≤b≤89、如图8,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<23B.x<3C.x>23D.x>310、如图9,李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12)B.y=-21x+12(0<x<24)C.y=2x-24(0<x<12)D.y=21x-12(0<x<24)11、如图11,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(-21,-21)C.(22,-22)D.(-22,-22)12、如图12,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0B.x<0C.x>1D.x<113、一次函数y=kx+b满足kb0且y随x的增大而减小,则此函数的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限第5题图8图9最新北师版八年级上册一次函数提高考试试题22/414.下面函数图象不经过第二象限的为()(A)y=3x+2(B)y=3x-2(C)y=-3x+2(D)y=-3x-2、15、图3中,表示一次函数ymxn与正比例函数(ymxm、n是常数,且0,0)mn的图象的是()16.在函数21xy中,自变量x的取值范围是。17、请你写出一个图象经过点(0,2),且y随x的增大而减小的一次函数解析式。18、已知,函数1321ykxk,k图象交x轴于点(34,0),k为何值时,y随x增大而增大19、甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠。某班级需购球拍4付,乒乓球若干盒(不少于4盒)。(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款为y乙(元),分别写出在这两家商店购买的付款数与乒乓球盒数x之间的函数关系式;(2)就乒乓球盒数讨论去哪家商店买合算20、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)路程/千米运费(元/吨、千米)甲库乙库甲库乙库A地20151212B地2520108(1)设甲库运往A地水泥x吨,求总运费y(元)关于x(吨)的函数关系式,画出它的图象(草图).(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?21、库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为yA元,yB元.(1)请填写上表,并求出yA,yB与x之间的函数关系式;最新北师版八年级上册一次函数提高考试试题23/4(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值22.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).23、已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB(1)求两个函数的解析式;(2)求△AOB的面积;24已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2),且与y轴交点的纵坐标是-3,它和x轴、y轴的交点是D、C;(1)分别写出两条直线解析式,并画草图;(2)计算四边形ABCD的面积;(3)若直线AB与DC交于点E,求△BCE的面积。25、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6;a)求△COP的面积;b)求点A的坐标及p的值;c)若△BOP与△DOP的面积相等,求直线BD的函数解析式。BA123404321Oxy-346-2FEDCBA最新北师版八年级上册一次函数提高考试试题24/424、如图,直线L:221xy与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动。(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t何值时△COM≌△AOB,并求此时M点的坐标。2、直线y=kx+b的图像经过A(3,4)和点B(2,7),3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。4、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。5、若一次函数y=kx+b的自变量x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9,求此函数的解析式。6、已知直线y=kx+b与直线y=-3x+7关于y轴对称,求k、b的值。7、已知直线y=kx+b与直线y=-3x+7关于x轴对称,求k、b的值。8、已知直线y=kx+b与直线y=-3x+7关于原点对称,求k、b的值(2,p)yxPOFEDCBA
本文标题:最新北师版八年级上册一次函数提高考试试题2
链接地址:https://www.777doc.com/doc-1850444 .html