您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 新北师大版七年级数学上册第四章《基本平面图形》分章节练习题
14.1线段.射线.直线知识点一:线段.射线.直线的概念.表示;知识点二:直线公理;一、自主预习1.(1)绷紧的琴弦、人行横道线都可以近似地看做。线段有端点。(2)将线段向一个方向无限延长就形成了。射线有端点。(3)将线段向两个方向无限延长就形成了。直线端点。(4)生活中,还有哪些物体可以近似地看作线段、射线、直线?线段、射线、直线,有哪些不同之处,有哪些相同之处?2.线段射线和直线的比较名称图形表示方法向几个方向延伸端点数长度可否度量线段射线直线3.经过一点可以画条直线;经过两点有且只有条直线,即确定一条直线。[来源:学+科+网Z+X+X+K]二、巩固练习1.下列说法正确的是()A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两条射线的长度的和等于直线的长度2.如图1,可表示为线段或线段.如图2,可表示为射线如图3,可表示为直线或或直线3.经过A.B.C三点可连结直线的条数为()A.只能一条B.只能三条C.三条或一条D.不能确定lFEDCm图3图2图1BA2EDABC4.要在墙上钉牢一根木条,至少要钉________颗钉子,根据是_______________________。5.砌墙时,先在两端竖立两根木桩,中间拉紧一条细绳,然后再沿绳砌墙,这是因为。6.读句画图,如图所示,已知平面上四个点(1)画直线AB;(2)画线段AC;(3)画射线AD.DC.CB;(4)图中有_______条线段,有_____条射线。7.如图,图中有多少条线段?分析:在直线BE上共有(条),而以A点为端点的线段有条,所以图中共有条线段.三、总结评估1.下面说法:①直线AB与直线BA是同一条直线;②射线与射线BA是同一条射线;③线段AB与线段BA表示同一条线段;④直线有0个端点,射线有1个端点,线段有2个端点.其中正确的是___________________________(填序号)。2.如图,已知点D,C是线段AB上的点,请回答:(1)图中共有几条线段?(2)用字母把这些线段表示出来.ABCDCDBA33.如图,如果直线m上依次有3个点A,B,C,那么(1)在直线m上共有多少条射线?多少条线段?(2)在直线m上增加一个点,共增加了多少条射线?多少条线段?(3)若在直线m上增加到n个点,则共有多少条射线?多少条线段?(4)若在直线m上增加了n个点,则共有多少条射线?多少条线段?mCBA上有n个点,则可以确定1+2+3+…+(n-1=2)1(nn条线段解:(1)以A、B、C为端点的射线各有条,因而共有射线_____条,线段有_____条。(2)增加一个点增加_____条射线,增加_____条线段。(3)由(1)、(2)总结归纳可得:共有_____条射线,线段的总条数是_____。(4)增加了n个点,即直线上共有(n+3)个点,则有_____条射线,_____条线段#xx#k.Com]5.小明从广州乘高铁到成都,发现这条火车路线上共有10个站(衡阳东,长沙南,武汉,汉口,宜昌东,荆州,恩施,丰都,重庆北站,成都东),且任意两站之间的票价都不相同,请你帮他解决下列问题。(1)有多少种不同的票价?(2)要准备多少种不同的车票?44.2比较线段的长短知识点一:两点之间的所有连线中,线段最短知识点二:借助直尺.圆规等工具比较两条线段的长短。知识点三:用圆规作一条线段等于已知线段。一、自主预习1.下列各种图形中,可以比较大小的是()A.两条射线B.两条直线C.直线与射线D.两条线段2.如图所示,小明到小颖家有三条路,小明想尽快到小颖家,那么他应该选择第_____条,理由是。3.比较下列各组线段的长短(用“”,“”或“=”填空)图3图2B图1ABCDABOA(1)如图1,线段OA线段OB;(2)如图2,线段AB线段AD.(3)如图3,线段AB线段AC线段BC;4.如图,若点C是线段AB的中点,那么_____21_____AC,_____2_____2AB。二、巩固练习1.如果点B在线段AC上,那么下列各表达式中:①ACAB21,②BCAB,③ABAC2,④ACBCAB,能表示B是线段AC的中点有()。A.1个B.2个C.3个D.4个2.下列说法错误的是()A.两点之间线段的长度,叫做两点间的距离。B.在所有连接两点的线中,总是线段最短5C.若ABMBAM21,则M为线段AB的中点。D.比较线段长短如果直接比较难以判断,有两种方法进行比较:测量法和叠和法3.根据图形填空:(1)____ACAB;(2)CDAD____;(3)ABBDBC________。4.把弯曲的河道改直可以缩短航程,其道理是。5.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,D是AC的中点,求CD的长?三、反思评价1.如图,BCACAB_____(填“>”.“=”或“<”),理由是:。2.下列现象中,可用“两点之间,线段最短”来解释的现象是()A.将弯曲的河道改直,可以缩短航程B.用两个钉子就可以把木条固定在墙上C.植树时,只要先定出两棵树的位置,就能确定同一行树所在的直线D.利用圆规可以比较两条线段的长短关系3.下列判断错误的是()A.任何两条线段都能度量长度B.因为线段有长短,所以它们之间能判断大小C.利用圆规配合尺子,也能比较线段的大小D.两条直线也能比较大小4.在直线l上截取线段AB,使AB=8cm,BC=3cm,则线段AC的长为()A.11cmB.5cmC.11cm或5cmD.7cmCBA第1题图65.比较两条线段AB与CD的长短,结果可能有几种情形?画图说明.6.如图所示:(1)点C是线段AB上的一点,M、N分别是线段AC、CB的中点,已知AC=4,[来源CB=6,求MN的长;(2)点C是线段AB上的任意一点,M、N分别是线段AC、CB的中点,AB=10,求MN的长;(3)点C是线段AB上的任意一点,M、N分别是线段AC、CB的中点,AB=a,求MN[来源的长;7123691236912369963124.3角知识点一:角的概念及表示方法;知识点二:在不同环境中恰当地表示角;知识点三:认识角的常用度量:度.分.秒,并会简单的换算。一、自主预习1.用适当的方法表示下图中的每个角:2.如下图所示,钟表是时针与分针形成一个角。(1)上午9时,分针与时针所成的角为________度;(2)上午10时,分针与时针所成的角为_________度;(3)中午12时30分,分针与时针所成的角为__________度;(4)上午7时15分,分针与时针所成的角为________3.1°的601为分,记作“1'”,即1°='.1'的601为秒,记作“1"”,即1'=″4.3600"='=°5.125.0'="二、巩固练习1.(1)角的定义1:有__________________的两条射线组成的图形叫做角。OABCABC(1)(2)8这个公共端点是角的________,这两条射线是角的__________。(2)角的定义2:角也可以看作由一条射线绕着它的端点旋转面形成的图形。如图(2),当射线旋转到起始位置OA与终止位置OB在一条直线上时,形成_____角;如图(3),继续旋转,OB与OA重合时,又形成________角;思考:平角是一条直线吗?周角是一条射线吗?为什么?2.如图,下列对图中各个角的表示方法不正确的是()A.∠AB.∠1C.∠CD.∠ABC3.如图,射线AB与AC所组成的角的表示方法不正确的是()A.∠1B.∠BACC.∠CABD.∠A4.下图中角的表示方法正确的个数有()A.1个B.2个C.3个D.4个5.如图,(1)能用一个字母表示的角有.(2)用三个大写字母表示∠1为;∠2为;∠3为6.将图中的角用不同方法表示出来,并填写下表。OA顶点边边B1OA(B)·(1)终边始边OAB···OAB(2)(3)第2题图第4题图1BCDA9ABCCBAD1[来源:Zxxk.Com][来源:学,科,网]7.2.36°用度、分、秒表示正确的是()A.2°3′6″B.2°30′6″C.2°21′6″D.2°21′36″8.(1)10.26°=°′〞(2)0.25°=′(3)62.3°=°′(4)89°18′-57°36′=(5)40°30′+30°30′30〞=9.如图,射线OA表示的方向是,射线OB表示的方向是三、促评反思1.下列说法中正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形。D.角可以看做是由一条线段绕着它的端点旋转而形成的图形。2.如图,OA表示北偏东30°方向的一条射线,画出表示下列方向的射线.(1)北偏东25°.(2)北偏西60°.(3)东南方向.(4)西北方向.3.试用适当的方法表示下列图中的每个角.104.计算:(1)60°45′=°;(2)108.8°=°′(3)90°-45°23′32〞=;(4)77°42′+30°25′=(5)28°32′46〞+15°36′48〞=(结果用度分秒表示)[来源:学。科。网Z。X。X。K](6)108°18′36〞-56.5°=(结果用度分秒表示)5.如图所示,从一点O出发,引两条射线可以得到一个角,引三条射线可以得到三个角,引四条射线可以得到六个角,引五条射线可以得到十个角,如果从一点出发引n(n为大于等于2的整数)条射线,则会得到多少个角?如果n=8时,检验你所得的结论是否正确.114.4角的比较一、自主预习1.回顾线段大小的比较,,怎样比较图中线段AB、BC、CA的长短?那么怎样比较∠A、∠B、∠C的大小呢?2.如图,∠AOD是角,∠AOC是角,∠AOE是角,∠COD是角,∠EOB是角。(填“直”.“锐”.“钝”)3.如图,比较大小:∠AOD∠AOC,∠DOC∠DOB,∠COD∠COE。4.如图,∠BOC=∠BOE+,∠BOA=∠BOC+,∠BOC=∠BOD-。5.如图,OE是∠BOC的角平分线,则∠BOC=2;OD是∠AOC的角平分线,则∠AOC=2。二、知识点归纳1.比较角的大小(1)度量法:用量角器量出角的度数,然后比较它们的大小。(2)叠合法:把两个角叠合在一起比较大小。(1)∠AOB∠AOB′;(2)∠AOB∠AOB′;(3)∠AOB∠AOB′。2.认识角的和差(第2.3题图)(第4.5题图)ABCAOBB'AOBB'AOB(B')(1)(2)(3)12思考:如图,图中共有几个角?它们之间有什么关系?3.用三角板拼角探究:借助三角尺画出15°,75°的角,你还能画出哪些角?有什么规律吗?4.角平分线图形语言:如图(1),文字语言:∵OB是∠AOC的平分线[来源:Zxxk.Com]符号语言:∴∠AOC=2∠AOB=2∠BOC或∠AOB=∠BOC=21。图形语言:如图(2),文字语言:∵OB、OC是∠AOD的三等分线符号语言:∴∠AOD=∠AOB=∠BOC=∠DOC或∠AOB=∠BOC=∠DOC=∠AOD。5、【例题1】如图所示,∠AOB是平角,OC是射线,OD、OE分别是∠AOC、∠BOC的角平分线,若∠AOD=65°,求∠DOE和∠BOE的度数.【变式练习】如图所示,已知点A、O、B在同一条直线上,且OC、OE分别是∠AOD、∠BOD的角平分线如图,射线OC的顶点O在直线AB上,OD是∠AOC的角平分线,OE是∠BOC的角平分线,求∠DOE的度数.AOBCAOBCD(2)AOBC(1)13三、巩固练习1.如图,已知∠AOB=74°,OC是∠AOB的平分线,则∠AOC=.[来源:学&科&网]2.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.90°B.100°C.105°D.120°3.已知OC是∠AOB的平分线,下列结论不正确的是()A.∠AOB=21∠BOCB.∠AOC=21∠AOBC.∠AOC=∠BOCD.∠AOB=2∠AOC4.已知OC平分∠AOD,OD平分∠BOC,下列结论不正确的是()A.∠AOC=
本文标题:新北师大版七年级数学上册第四章《基本平面图形》分章节练习题
链接地址:https://www.777doc.com/doc-1860557 .html