您好,欢迎访问三七文档
附录A拉普拉斯变换及反变换1.表A-1拉氏变换的基本性质齐次性)()]([saFtafL=1线性定理叠加性)()()]()([2121sFsFtftfL±=±一般形式=−=][′−ٛ−=−=−−−−=−∑11)1()1(1222)()()0()()(0)0()(])([)0()(])([kkkknkknnnndttfdtffssFsdttfdLfsfsFsdttfdLfssFdttdfLM)(2微分定理初始条件为0时)(])([sFsdttfdLnnn=一般形式}}∑∫∫∫∫∫∫∫∫∫∫∫==+−===+=++=+=nktnnknnnntttdttfsssFdttfLsdttfsdttfssFdttfLsdttfssFdttfL1010220220]))(([1)(])()([]))(([])([)(]))(([])([)(])([个共个共LLM3积分定理初始条件为0时}nnnssFdttfL)(]))(([=∫∫个共L4延迟定理(或称域平移定理)t)()](1)([sFeTtTtfLTs−=−−5衰减定理(或称域平移定理)s)(])([asFetfLat+=−6终值定理)(lim)(lim0ssFtfst→∞→=7初值定理)(lim)(lim0ssFtfst∞→→=4198卷积定理)()(])()([])()([21021021sFsFdtftfLdftfLtt=−=−∫∫τττττ2.表A-2常用函数的拉氏变换和z变换表序号拉氏变换E(s)时间函数e(t)Z变换E(z)11δ(t)12Tse−−11∑∞=−=0)()(nTnTttδδ1−zz3s1)(1t1−zz421st2)1(−zTz531s22t32)1(2)1(−+zzzT611+ns!ntn)(!)1(lim0aTnnnaezzan−→−∂∂−7as+1ate−aTezz−−82)(1as+atte−2)(aTaTezTze−−−9)(assa+ate−−1))(1()1(aTaTezzze−−−−−10))((bsasab++−btatee−−−bTaTezzezz−−−−−1122ωω+stωsin1cos2sin2+−TzzTzωω1222ω+sstωcos1cos2)cos(2+−−TzzTzzωω1322)(ωω++asteatωsin−aTaTaTeTzezTze22cos2sin−−−+−ωω1422)(ω+++asasteatωcos−aTaTaTeTzezTzez222cos2cos−−−+−−ωω42015aTsln)/1(1−Tta/azz−3.用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设是的有理真分式)(sFs01110111)()()(asasasabsbsbsbsAsBsFnnnnmmmm++++++++==−−−−LL()mn式中系数,都是实常数;是正整数。按代数定理可将展开为部分分式。分以下两种情况讨论。nnaaaa,,...,,110−mmbbbb,,,110−Lnm,)(sF①无重根0)(=sA这时,F(s)可展开为n个简单的部分分式之和的形式。∑=−=−++−++−+−=niiinniisscsscsscsscsscsF12211)(LL(F-1)式中,是特征方程A(s)=0的根。为待定常数,称为F(s)在处的留数,可按下式计算:nsss,,,21Licis(F-2))()(limsFsscissii−=→或issisAsBc=′=)()((F-3)式中,为对)(sA′)(sAs的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡−==∑=−−niiisscLsFLtf111)()(=(F-4)tsniiiec−=∑1②有重根0)(=sA设有r重根,F(s)可写为0)(=sA1s())()()()(11nrrsssssssBsF−−−=+L421=nniirrrrrrsscsscsscsscsscssc−++−++−+−++−+−++−−LLL11111111)()()(式中,为F(s)的r重根,,…,为F(s)的n-r个单根;1s1+rsns其中,,…,仍按式(F-2)或(F-3)计算,,,…,则按下式计算:1+rcncrc1−rc1c)()(lim11sFsscrssr−=→)]()([lim111sFssdsdcrssr−=→−M)()(lim!11)()(1sFssdsdjcrjjssjr−=→−(F-5)M)()(lim)!1(11)1()1(11sFssdsdrcrrrss−−=−−→原函数为)(tf[])()(1sFLtf−=⎥⎦⎤⎢⎣⎡−++−++−+−++−+−=++−−−nniirrrrrrsscsscsscsscsscsscLLLL111111111)()()(tsnriitsrrrriecectctrctrc∑+=−−−+⎥⎦⎤⎢⎣⎡+++−+−=1122111)!2()!1(L(F-6)4224.2.10性质表及常用变换表为了便于查阅和应用,最后,将单边拉普拉斯变换的性质和常用单边拉普拉斯变换分别列于表4.1和4.2表中。表4.1单边拉普拉斯变换的性质序号性质名称信号拉普拉斯变换0定义t≥0,σσ01线性σmax(σ1,σ2)2尺度变换f(at),a0F(),σaσ03时移f(t-t0)ε(t-t0),t00e-st0F(s),σσ04复频移F(s-sa),σσa+σ0f(1)(t)=sF(s)-f(0-),σσ05时域微分f(n)(t)=snF(s)-,σσ0时域积分6,σmax(σ1,0)423f(-1)(t)=+f(-n)(t)=+7时域卷积f1(t)*f2(t)f1(t),f2(t)为因果信号F1(s)F2(s),σmax(σ1,σ2)时域相乘8f(t)f12(t)σσ1+σ2,σ1cσ-σ2s域微分9(-t)nf(t)F(n)(s),σσ010s域积分,σσ0初值定理11f(0+)=终值定理12f(∞)=,s=0在收敛域内表4.2常用单边拉普拉斯变换收敛域序号信号拉普拉斯变换1δ(t)1σ-∞2δ(n)(t)snσ-∞3σ0424e4-αtε(t)σ-αsin(ω50t)ε(t)σ06σ0σ-αe7-αtsin(ω0t)ε(t)σ-αet)ε(t)8-αtcos(ω09σ010σ-α11σ0425
本文标题:拉普拉斯变换表
链接地址:https://www.777doc.com/doc-1861744 .html