您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 凸轮机构的弹性动力学
高等机构学大作业1凸轮机构的弹性动力学分析(附MATLAB代码)【问题】已知一凸轮系统,欲使其考虑弹性因素后从动件的真实运动规律按照余弦加速度运动规律运动,建立该凸轮系统的弹性动力学模型,分析其未考虑弹性因素时从动件的运动规律,并绘制出从动件的理论运动规律及考虑弹性因素后的真实运动规律。凸轮系统的运动及动力参数自定。程序代码需提供电子版,并说明运行环境。【解答】一、建立动力学模型取图1所示的凸轮机构为研究对象,图2为其所对应的动力学模型。图1:凸轮机构运动简图图2:凸轮机构的动力学模型为使得问题简化,力学模型中忽略了凸轮轴的扭转变形、弯曲变形以及回位弹簧的阻尼作用。图2中k为系统等效弹簧的刚度,c为凸轮机构从动组件的阻尼系数,hk为回位弹簧的刚度,0F为回位弹簧的预紧力,M为凸轮机构在从动件侧的当量质量,x为与凸轮廓线有关的等效凸轮升程(图中所示的凸轮并非真正的凸轮,其廓线对应的升程与真实凸轮廓线对应的升程0x具备关系0rxx,其中r为摇臂比。因为x与0x仅相差一个比例系数r,为了便于叙述,后文将只注重分析x与从动件输出的关系,而不再专门区别x与0x的差异),y为从动件的实际升程。二、建立动力学方程该机构的自由度为1,利用牛顿第二定律建立运动微分方程:高等机构学大作业2)cos1(2hy022)()(FykdtdxdtdycxykdtydMh(式1)设凸轮转动的角速度为,它与时间微分dt、凸轮转角微分d具有关系:ddt(式2)将(式2)代入(式1)并整理可得:0222)(FkxddxcykkddycdydMh(式3)微分方程(式3)有两层含义:①若已知从动件的真实运动规律,可求解出凸轮在高速运转条件下考虑弹性变形影响的理论轮廓;②若已知凸轮廓线,可求解考虑弹性变形的从动件的动力学响应。三、运动方程的求解(一)凸轮轮廓的设计已知条件如下:kgM08459.0,凸轮的转速min/1200rn,msNc/7148.55,mNkh/10400,mNk/3194800,NF4000;为避免余弦加速度运动产生的冲击,取凸轮的推程运动角和回程运动角均为180,远休止角和近休止角均为0,从动件的最大升程mmh2.6。根据已知条件,可以确定从动件的位移方程将上式代入(式3)可得:kxddxcFhkkchkkMhhh02)(21sin2cos)]([2(式4)由于(式4)对应的常微分方程难以求出解析解,这里利用MATLAB求解出其数值解并与位移方程比较如下图:高等机构学大作业3若需要考虑机构的弹性变形,凸轮的轮廓应按照上图中的红色曲线进行设计。(二)由已知廓线求解从动件的真实运动规律由于系统的弹性变形,从动件的真实运动y与等效凸轮升程x不再相等,当然,从动件的真实运动速度、加速度与对应的理论值也不相等。由于弹簧的预紧力0F为常数,它只影响系统振动的初始平衡位置,故在分析从动件的运动规律时不再考虑,从而(式1)被简化为:kxdtdxcykkdtdycdtydMh)(22(式5)根据振动理论,系统自由振动的固有频率)1(2Mkkhn其中阻尼比)(2hkkMc代入相关数值计算可得sradn/6147,0535.0如果从动件按照前述的余弦加速度规律运动,则)cos1(2hx将上式代入(式5)可得:kxddxcykkddycdydMh)(222(式6)0123456701234567x10-3凸轮的转角/rad升程/m考虑弹性变形后凸轮的理论轮廓未考虑弹性变形的凸轮理论轮廓高等机构学大作业4利用MATLAB求解(式6)的数值解,结果如下(图中的nn):从上图中的位移、速度、加速度分析看,当考虑到系统的弹性和阻尼后,工作端的运动规律发生改变,yx。只有当n很大时,也就是说当系统的固有频率n很大时(刚度大),而01234567-1012345678x10-3凸轮的转角/rad位移/mn=4n=3n=2标准输出01234567-6-4-20246x10-3凸轮的转角/rad速度/(m/s)n=4n=3n=2标准输出01234567-8-6-4-20246x10-3凸轮的转角/rad加速度/(m/s2)n=4n=3n=2标准输出高等机构学大作业5且凸轮的角速度很小时,y才接近x值。程序附录:%filename:tulun.m%function:cooperatewithjisuanlunkuo.mtocalculatethecurveofthecamfunctiondx=tulun(a,x)%%凸轮机构的结构参数h=6.2*10^(-3);%升程m=0.08459;%凸轮机构的当量质量n=1200;w=n/60*2*pi;%凸轮转速及角速度c=55.7148;%阻尼k1=10400;%回位弹簧刚度k=3194800;%系统等效弹簧刚度F=400;%回位弹簧预紧力%%理论轮廓的微分方程dx=(h/2*(m*w^2-k-k1)*cos(a)+h/2*c*w*sin(a)+0.5*(k+k1)*h+F-k*x)/(c*w);%filename:jisuanlunkuo.m%function:cooperatewithtulun.mtocalculatethecurveofthecam%%计算考虑弹性变形的凸轮的理论轮廓曲线[a,x]=ode45('tulun',[02*pi],0);plot(a,x,'r');holdon;%%作出未考虑弹性变形的凸轮的理论轮廓曲线a1=linspace(0,2*pi);h=6.2*10^(-3);y=h/2*(1-cos(a1));plot(a1,y,'-b');%%添加标注gridon;legend('考虑弹性变形后凸轮的理论轮廓','未考虑弹性变形的凸轮理论轮廓');xlabel('凸轮的转角/rad');ylabel('升程/m');%filename:yundongfenxi.m%function:cooperatewithfenxi.mtocalculatethedisplacement,velocity%andaccelerationofthecammechanismwhentheelasticdeformationof%thecamisnotconsideredindesignfunctiondy=yundongfenxi(a,y)%%凸轮机构的结构参数h=6.2*10^(-3);m=0.08459;高等机构学大作业6c=55.7148;k1=10400;w=1537;%不同情况下将凸轮的角速度值分别设为1537,2049,3074k=3194800;%%运动分析微分方程dy=zeros(2,1);dy(1)=y(2);dy(2)=(c*w*h/2*sin(a)+k*h/2*(1-cos(a))-(k+k1)*y(1)-c*w*y(1))/(m*w*w);%filename:fenxi.m%function:cooperatewithyundongfenxi.mtocalculatethedisplacement,velocity%andaccelerationofthecammechanismwhentheelasticdeformationof%thecamisnotconsideredindesign%%绘制从动件的位移曲线[a,y]=ode45('yundongfenxi',[02*pi],[00]);n=length(a);figure(1);plot(a,y(:,1),'--b');%不同情况下将线型分别设为--b,--g,--kholdon;%%绘制从动件的速度曲线figure(2);a1=zeros(n-1,1);fori=1:(n-1)a1(i)=a(i);endy1=diff(y(:,1))./diff(a);plot(a1,y1,'--b');%不同情况下将线型分别设为--b,--g,--kholdon;%%绘制从动件的加速度曲线figure(3);a2=zeros(n-2,1);fori=2:(n-1)a2(i-1)=a1(i);endy2=diff(y1(:,1))./diff(a1);plot(a2,y2,'--b');%不同情况下将线型分别设为--b,--g,--kholdon;%fliename:zuihou.m高等机构学大作业7%function:givetheidealdisplacement,velocityandaccelerationofthe%cammechanism%%绘制理想位移曲线a0=linspace(0,2*pi);n=length(a0);y0=3.1*10^(-3)*(1-cos(a0));figure(1);plot(a0,y0,'r');holdon;%%绘制理想速度曲线figure(2);a01=zeros(1,n-1);fori=1:(n-1)a01(i)=a0(i);endy01=diff(y0)./diff(a0);plot(a01,y01,'r');holdon;%%绘制理想加速度曲线figure(3);a02=zeros(1,n-2);fori=2:(n-1)a02(i-1)=a01(i);endy02=diff(y01)./diff(a01);plot(a02,y02,'r');holdon;%%添加标注figure(1);xlabel('凸轮的转角/rad');ylabel('位移/m');legend('n=4','n=3','n=2','标准输出');figure(2);xlabel('凸轮的转角/rad');ylabel('速度/(m/s)');legend('n=4','n=3','n=2','标准输出');figure(3);xlabel('凸轮的转角/rad');ylabel('加速度/(m/s^2)');legend('n=4','n=3','n=2','标准输出');程序运行说明:在MATLAB主窗口中运行jisuanlunkuo.m文件可以得到考虑弹性变形后凸轮的理论轮廓曲线和未考虑弹性变形的凸轮理论轮廓曲线对比图;初次运行fenxi.m可以得到高等机构学大作业8凸轮角速度srad/1537情况下从动件的位移、速度和加速度图,之后需要按程序说明中的位置将yundongfenxi.m文件中的角速度分别改为srad/2049和srad/3074并相应地将fenxi.m文件中的线型改为--g和--k,然后再次运行fenxi.m文件可以得到srad/2049以及srad/3074情况下从动件的位移、速度和加速度图(每次修改后注意保存),最后运行zuihou.m文件得到最终的从动件运动量的对比分析图。
本文标题:凸轮机构的弹性动力学
链接地址:https://www.777doc.com/doc-1872894 .html