您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2015-2016学年四川省成都市高一(上)期末数学试卷
第1页(共8页)2015-2016学年四川省成都市高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣1,0,1,2},B={x|x<2},则A∩B=()A.{﹣1,0,1}B.{﹣1,0,2}C.{﹣1,0}D.{0,1}2.(5分)sin150°的值等于()A.B.C.D.3.(5分)下列函数中,f(x)与g(x)相等的是()A.f(x)=x,g(x)=B.f(x)=x2,g(x)=()4C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x04.(5分)幂函数y=xa(α是常数)的图象()A.一定经过点(0,0)B.一定经过点(1,1)C.一定经过点(﹣1,1)D.一定经过点(1,﹣1)5.(5分)下列函数中,图象关于点(,0)对称的是()A.y=sin(x+)B.y=cos(x﹣)C.y=sin(x+)D.y=tan(x+)6.(5分)已知a=log32,b=(log32)2,c=log4,则()A.a<c<bB.c<b<aC.a<b<cD.b<a<c7.(5分)若角α=2rad(rad为弧度制单位),则下列说法错误的是()A.角α为第二象限角B.α=C.sinα>0D.sinα<cosα8.(5分)下列函数中,是奇函数且在(0,1]上单调递减的函数是()A.y=﹣x2+2xB.y=x+C.y=2x﹣2﹣xD.y=1﹣9.(5分)已知关于x的方程x2﹣kx+k+3=0,的两个不相等的实数根都大于2,则实数k的取值范围是()A.k>6B.4<k<7C.6<k<7D.k>6或k>﹣210.(5分)已知函数f(x)=2log22x﹣4λlog2x﹣1在x∈[1,2]上的最小值是﹣,则实数λ的值为()A.λ=﹣1B.λ=C.λ=D.λ=11.(5分)定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=x2+4x+3,则y=f[f(x)]+1在区间[﹣3,3]上的零点个数为()A.1个B.2个C.4个D.6个12.(5分)已知函数f(x)=,其中[x]表示不超过x的最大整数,如,[﹣3•5]=﹣4,[1•2]=1,设n∈N*,定义函数fn(x)为:f1(x)=f(x),且fn(x)=f[fn﹣1(x)](n≥2),有以下说法:①函数y=的定义域为{x|≤x≤2};②设集合A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;③f2015()+f2016()=;④若集合M={x|f12(x)=x,x∈[0,2]},则M中至少包含有8个元素.其中说法正确的个数是()A.1个B.2个C.3个D.4个二、填空题:本大题共4小题,每小题5分,共20分。13.(5分)函数y=的定义域是.14.(5分)已知α是第三象限角,tanα=,则sinα=.15.(5分)已知函数f(x)(对应的曲线连续不断)在区间[0,2]上的部分对应值如表:由此可判断:当精确度为0.1时,方程f(x)=0的一个近似解为(精确到0.01)16.(5分)已知函数f(x)=tan,x∈(﹣4,4),则满足不等式(a﹣1)log[f(a﹣1)+]≤2的实数a的取值范围是.三、解答题:本大题共6小题,共70分。解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)(Ⅰ)计算:()﹣1+()+lg3﹣lg0.3x00.881.301.4061.4311.521.621.701.8752f(x)﹣2﹣0.963﹣0.340﹣0.0530.1450.6251.9752.5454.055第2页(共8页)(Ⅱ)已知tanα=2,求的值.18.(12分)已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=﹣1(Ⅰ)求f(0),f(﹣2)的值(Ⅱ)用函数单调性的定义证明函数f(x)在(0,+∞)上是减函数.19.(12分)某种放射性元素的原子数N随时间t的变化规律是N=N0e﹣λt,其中e=2.71828…为自然对数的底数,N0,λ是正的常数(Ⅰ)当N0=e3,λ=,t=4时,求lnN的值(Ⅱ)把t表示原子数N的函数;并求当N=,λ=时,t的值(结果保留整数)20.(12分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如下表:xx1x2x3ωx+φ0π2πAsin(ωx+φ)+B141﹣21(Ⅰ)求x2的值及函数f(x)的解析式;(Ⅱ)请说明把函数g(x)=sinx的图象上所有的点经过怎样的变换可以得到函数f(x)的图象.21.(12分)已知函数f(x)=loga(a>0且a≠1)的定义域为{x|x>2或x<﹣2}.(1)求实数m的值;(2)设函数g(x)=f(),对函数g(x)定义域内任意的x1,x2,若x1+x2≠0,求证:g(x1)+g(x2)=g();(3)若函数f(x)在区间(a﹣4,r)上的值域为(1,+∞),求a﹣r的值.22.(12分)已知函数f(x)=sin(x∈R).任取t∈R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)﹣m(t).(Ⅰ)求函数f(x)的最小正周期及对称轴方程(Ⅱ)当t∈[﹣2,0]时,求函数g(t)的解析式(Ⅲ)设函数h(x)=2|x﹣k|,H(x)=x|x﹣k|+2k﹣8,其中实数k为参数,且满足关于t的不等式k﹣5g(t)≤0有解.若对任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求实数k的取值范围参考公式:sinα﹣cosα=sin(α﹣)第3页(共8页)2015-2016学年四川省成都市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣1,0,1,2},B={x|x<2},则A∩B=()A.{﹣1,0,1}B.{﹣1,0,2}C.{﹣1,0}D.{0,1}【解答】已知集合A={﹣1,0,1,2},B={x|x<2},则A∩B={﹣1,0,1}.故选:A.2.(5分)sin150°的值等于()A.B.C.D.【解答】解:sin150°=sin30°=故选A.3.(5分)下列函数中,f(x)与g(x)相等的是()A.f(x)=x,g(x)=B.f(x)=x2,g(x)=()4C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x0【解答】解:对于A,f(x)=x(x∈R),与g(x)==x(x≠0)的定义域不同,不是相等函数;对于B,f(x)=x2(x∈R),与g(x)==x2(x≥0)的定义域不同,不是相等函数;对于C,f(x)=x2(x∈R),与g(x)==x2(x∈R)的定义域相同,对应法则也相同,是相等函数;对于D,f(x)=1(x∈R),与g(x)=x0=1(x≠0)的定义域不同,不是相等函数.故选:C.4.(5分)幂函数y=xa(α是常数)的图象()A.一定经过点(0,0)B.一定经过点(1,1)C.一定经过点(﹣1,1)D.一定经过点(1,﹣1)【解答】解:取x=1,则y=1α=1,因此幂函数y=xa(α是常数)的图象一定经过(1,1)点.故选B.5.(5分)下列函数中,图象关于点(,0)对称的是()A.y=sin(x+)B.y=cos(x﹣)C.y=sin(x+)D.y=tan(x+)【解答】解:∵当x=时,f(x)=sin(x+)=,故排除A;当x=时,f(x)=cos(x﹣)=1,故排除B;当x=时,f(x)=sin(x+)=1,故排除C;当x=时,f(x)=tan(x+)=tan,无意义,故它的图象关于点(,0)对称,故选:D.6.(5分)已知a=log32,b=(log32)2,c=log4,则()A.a<c<bB.c<b<aC.a<b<cD.b<a<c【解答】解:∵0=log31<a=log32<log33=1,∴0<b=(log32)2<a=log32,∵c=log4<log41=0,∴c<b<a.故选:B.7.(5分)若角α=2rad(rad为弧度制单位),则下列说法错误的是()A.角α为第二象限角B.α=C.sinα>0D.sinα<cosα【解答】解:∵α=2>且α=2<π,∴A、角α为第二象限角,正确;B、α=()°=2,正确;C、sinα>0,正确;D、sinα>0,cosα<0,故错误;故选:D.8.(5分)下列函数中,是奇函数且在(0,1]上单调递减的函数是()第4页(共8页)A.y=﹣x2+2xB.y=x+C.y=2x﹣2﹣xD.y=1﹣【解答】解:A.y=﹣x2+2x的图象不关于原点对称,不是奇函数,∴该选项错误;B.的定义域为{x|x≠0},且;∴该函数为奇函数;,x∈(0,1]时,y′≤0;∴该函数在(0,1]上单调递减,∴该选项正确;C.y=2x﹣2﹣x,x增大时,﹣x减小,2﹣x减小,﹣2﹣x增大,且2x增大,∴y增大;∴该函数在(0,1]上单调递增,∴该选项错误;D.y=1﹣的定义域为[0,+∞),不关于原点对称,不是奇函数,∴该选项错误.故选:B.9.(5分)已知关于x的方程x2﹣kx+k+3=0,的两个不相等的实数根都大于2,则实数k的取值范围是()A.k>6B.4<k<7C.6<k<7D.k>6或k>﹣2【解答】解:∵关于x的方程x2﹣kx+k+3=0的两个不相等的实数根都大于2,∴,解①得:k<﹣2或k>6;解②得:k>4;解③得:k<7.取交集,可得6<k<7.故选:C.10.(5分)已知函数f(x)=2log22x﹣4λlog2x﹣1在x∈[1,2]上的最小值是﹣,则实数λ的值为()A.λ=﹣1B.λ=C.λ=D.λ=【解答】解:可设t=log2x(0≤t≤1),即有g(t)=2t2﹣4λt﹣1在[0,1]上的最小值是﹣,对称轴为t=λ,①当λ≤0时,[0,1]为增区间,即有g(0)为最小值,且为﹣1,不成立;②当λ≥1时,[0,1]为减区间,即有g(1)为最小值,且为1﹣4λ=﹣,解得λ=,不成立;③当0<λ<1时,[0,λ)为减区间,(λ,1)为增区间,即有g(λ)取得最小值,且为2λ2﹣4λ2﹣1=﹣,解得λ=(负的舍去).综上可得,.故选B.11.(5分)定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=x2+4x+3,则y=f[f(x)]+1在区间[﹣3,3]上的零点个数为()A.1个B.2个C.4个D.6个【解答】解:∵当x∈[﹣3,﹣2]时,f(x)=x2+4x+3=(x+2)2﹣1∈[﹣1,0];又f(x)为R上的偶函数,∴当x∈[2,3]时,f(x)∈[﹣1,0];又f(x+2)=f(x),∴f(x)为以2为周期的函数,由题意,偶函数f(x)在区间[﹣3,3]上的值域为[﹣1,0],由f[f(x)]+1=0得到f[f(x)]=﹣1,于是可得f(x)=0或±2(舍弃),由f(x)=0可得x=±1,±3,所以y=f[f(x)]+1在区间[﹣3,3]上的零点个数为4.故选:C,12.(5分)已知函数f(x)=,其中[x]表示不超过x的最大整数,如,[﹣3•5]=﹣4,[1•2]=1,设n∈N*,定义函数fn(x)为:f1(x)=f(x),且fn(x)=f[fn﹣1(x)](n≥2),有以下说法:①函数y=的定义域为{x|≤x≤2};②设集合A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;③f2015()+f2016()=;④若集合M={x|f12(x)=x,x∈[0,2]},则M中至少包含有8个元素.其中说法正确的个数是()A.1个B.2个C.3个D.4个【解答】解:当0≤x<1时,f(x)=2(1﹣x);当1≤x≤2时,f(x)=x﹣1.即有f(x)=,第5页(共8页)画出y=f(x)在[0,2]的图象.对于①,可得f(x)≤x,当1
本文标题:2015-2016学年四川省成都市高一(上)期末数学试卷
链接地址:https://www.777doc.com/doc-1881363 .html