您好,欢迎访问三七文档
《电子技术》课程设计报告题目温度测量与控制电路学院(部)信息学院专业班级学生姓名学号12月28日至1月10日共2周指导教师(签字)前言随着社会的发展和科技的进步以及测温仪器在各个领域的应用,温度控制系统已应用到生活的各个方面,但是温度控制一直是一个热门领域,是与人们息息相关的问题。温度是科学技术中一个基本物理量。在工业生产等许多领域,温度常常是表征对象和过度状态的重要物理量。各个工程应用领域对温度的要求越来越高。在众多的生产过程中,对温度的控制效果直接影响到了产品的质量以及成本等问题。因此及时、准确的得到温度信息并进行可靠、准确、快速的控制,同时兼顾到系统灵活性、方便性、以及便于数据的读取与安装是一个非常重要的环节。本次课程设计给我们创造了良好的学习机会:一是查阅资料,培养了自己的自学能力,将自己所学的数字电子技术,模拟电子技术,以及传感器的相关知识综合运用,二是系统了解温度监测特别是工业上的温度控制的详细过程,为日后的学习和工作积累宝贵的经验。在确定课设题目,经仔细分析问题后,我们发现实现温度的测量与控制方法很多,大致可以分为两大类型,一种是以单片机为主的软硬件结合方式,另一种是用简单芯片构成实现电路。由于单片机知识的匮乏,我们决定用后者实现。确定了总的电路结构,我们将设计分为三部分:温度传感器模块、数字显示与温度范围控制模块、声光报警与温度控制执行模块。在具体分工方面,———负责温度传感模块、数字显示与温度控制模块中的控制温度设定部分;———负责数字显示与温度范围控制模块中的AD转换与解码、温度设定锁存部分、温度超限判断部分;---负责数字显示与温度范围控制模块中的译码显示、声光报警与温度控制执行模块。温度传感部分我们选用热电偶构成的温度传感器,AD转换部分使用集成芯片ADC;二进制到8421BCD码的转换用74283N形成六位二进制码转换后再用三个二进制码转换电路级联实现;显示译码部分用4511和七段数码管实现;温度控制范围设定采用数字设定方式,用十进制加计数器74LS160和锁存器74LS175实现;温度的判断比较通过数值比较器74LS85的级联实现;温度执行部分采用555构成的多谐振荡电路实现。声光报警利用555定时器构成多谐振荡器组成。在确定了单元电路的设计方案后,我们在总结出总体方案框图的基础上,应用Multisim13.0仿真软件画出了各单元模块电路图,最后汇总电路图。由于缺少经验,所以本次设计中难免存在缺点和错误,敬请老师批评指正。目录题目·······························································································1摘要·······························································································1关键词····························································································1技术要求·························································································1正文·······························································································1一、系统概述和总体方案论证与选择···················································1二、单元电路设计···········································································3(一)温度传感模块···································································3(二)数字显示与温度范围控制模块··············································41.A/D转换与码制转换·························································32.译码显示·····································································143.控制温度设定·······························································154.温度超限判断·······························································17(三)声光报警与温度控制执行模块············································191.声光报警模块·······························································192.温度控制执行模块·························································19三、系统综述···············································································20结束语··························································································21参考文献·······················································································21鸣谢·····························································································21元器件明细表·················································································22存在的问题、收获与体会··································································23附录·····························································································24评语·····························································································25【题目】温度测量与控制电路【摘要】本次课程设计是温度测量与控制电路,实现温度的显示与报警,其在实际应用中相当广泛的测量电路。主要运用基本的数字电子技术和模拟电子技术的知识,同时综合温度传感器的相关应用,从基本的单元电路出发,实现了温度测量与控制电路的设计。总体设计中的主要思想:首先,达到设计要求;其次,尽量应用所学知识;最后,设计力求系统简单可靠,有实际价值。温度传感采用热电偶和温度补偿原理。AD转换部分使用集成芯片ADC;二进制到8421BCD码的转换用74283N形成六位二进制码转换后再用三个二进制码转换电路级联实现;显示译码部分用4511和七段数码管实现;温度控制范围设定采用数字设定方式,用十进制加计数器74LS160和锁存器74LS175实现;温度的判断比较通过数值比较器74LS85的级联实现;温度执行部分采用555构成的多谐振荡电路实现,提高了加热系统与降温系统的稳定性和实用性。声光报警利用555定时器构成多谐振荡器组成。【关键词】温度传感器A/D转换控制温度声光报警二进制转BCD译码显示555定时器【技术要求】1.测量温度范围为200C~1650C,精度±0.50C;2.被测量温度与控制温度均可数字显示;3.控制温度连续可调;4.温度超过设定值时,产生声光报警【正文】一、系统概述和总体方案论证与选择在本系统的总体设计中,有以下两种思路:方案A.如图1-1-1所示,温度传感器模块将温度线性地转变为电压信号,经过滤波放大电路,一路输入给A/D转换电路,经过译码进行数字显示,另一路与滑变分1压电路相连,由此设定控制温度上下限,经过电压比较器进行比较输出高低电平指示信号,由此控制温度控制执行模块和声光报警部分。此电路最基本的特点就是电路结构简单,实现比较容易。图1.1-1总体设计方案A框图方案B如图1-1-2所示,温度传感器模块将温度线性地转变为电压信号,经过放大电路,一路输入给A/D转换电路,经过译码进行数字显示,另一路与数字比较器相连,由此设定控制温度上下限,经过数字比较器,输出指示信号,由此控制温度控制执行模块和声光报警部分。温度传感模块和A/D转换模块,译码显示模块,温控执行和报警模块均与方案A相同,不同处在于控制温度设定方式和温度超限判断方式。方案A的超限判断模块和控制温度设定主要使用模拟信号,该方案易受外界干扰如使用环境温度等因素,另外由于滑变设定温度不易精确调节,误差较大。方案B主要采用数字逻辑芯片数字比较器、锁存器等控制实现,其工作的稳定性、准确性和功能扩展性较强。图1.1-2总体设计方案B框图方案C2该方案和方案B然后总体思路一样,只是将A/D转换模块改为V/F电压转换,那么就可以简单的通过计数器对频率进行计数,不用再码制转换,框图如下:图1.1-3总体设计方案C框图比较以上三种方案,方案A电路简单,误差较大;方案B电路复杂,但精度较高,可移植性好,方案C设计巧妙,但是误差同样较大,结合以上三种方案的优缺点,我们选择方案B进行系统设计。二、单元电路设计(一)温度传感模块此处任世敏同学做了非常详细的介绍,我只叙述一下我们小组最终采用的方案热电偶测温法。原理:如果两种不同成分的均质导体形成回路直接测温端,接线端子叫参比端,当两端存在温差时,就会在回路中产生电流,即塞贝克效应。热电势的大小只与热电偶导体材质以及两端温度有关。与热电偶导体的长度和直径无关。热电偶测温电路是以热电偶为基础进行测温。采用理由:热偶在很大范围内线性非常明显,且测温范围广,响应速度快,抗干扰性强,所以最终选择了用热电偶组成传感电路。首先由两个电流源并联做温度数据的产生装置模拟外界温度值的范围,由滑动变阻器抽头的位置变化来产生模拟的随机温度值,并把温度值转换为由电压表示的值,外加VEE和VCC来控制电压的正负使其产生负电压,由同相比例放大器放大结果,放大倍数Auf=1+RF1/R2=2,在最后由R4、R5分压来精确的控制输出电压,达到需要的值。这样就产生了由电压表示的温度值。3图1.2-1(二)数字显示与温度范围控制模块1.A/D转换与码制转换如何将传感器输出的电压转换为数码管可以显示的十进制数字是本次的关键,此处介绍两种可实现的方案,分别为:A/D转换电路+码制转换,压控振荡电路。①A/D转换电路+码制转换A/D转换模块采用Multisim元件库里的ADC芯片,也可以采用AD574A集成芯片,然而此芯片需要编程实现,仿真时并没有采用此电路,但是该芯片在实际工程中的应用范围很广泛。由于A/D转换后输出的数据格式为二进制数字,所以需要码制转换后才能在LCD数码管上显示十进制数字。码制转换可以采用的方案有四种:①自己动手,丰衣足食;②采用若干
本文标题:温度测量与控制电路
链接地址:https://www.777doc.com/doc-1893344 .html