您好,欢迎访问三七文档
数列求和一、直接求和法(或公式法)掌握一些常见的数列的前n项和:123……+n=(1)2nn,1+3+5+……+(2n-1)=2n2222123……+n=(1)(21)6nnn,3333123……+n=2(1)2nn等.例1求2222222212345699100.解:原式22222222(21)(43)(65)(10099)3711199.由等差数列求和公式,得原式50(3199)50502.变式练习:已知3log1log23x,求............32nxxxx的前n项和.解:1-n21二、倒序相加法此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和.例2求222222222222123101102938101的和.解:设222222222222123101102938101S则222222222222109811012938101S.两式相加,得2111105SS,.三、裂项相消法常见的拆项公式有:1()nnk111()knnk,1nkn1()nknk,1(21)(21)nn111()22121nn,等.例3已知222112(1)(21)6nnnn,求22222222235721()11212312nnnN的和.解:22221216112(1)(1)(21)6nnnannnnnn,11161223(1)111116122311611ln.1nSnnnnnn小结:如果数列{}na的通项公式很容易表示成另一个数列{}nb的相邻两项的差,即1nnnabb,则有11nnSbb.这种方法就称为裂项相消求和法.变式练习:求数列311,421,531,…,)2(1nn,…的前n项和S.解:∵)2(1nn=211(21nn)Sn=)211()4121()311(21nn=)2111211(21nn=42122143nn四、错位相减法源于等比数列前n项和公式的推导,对于形如{}nnab的数列,其中{}na为等差数列,{}nb为等比数列,均可用此法.例4求2335(21)nxxxnx的和.解:当1x时,21122(1)(21)1(1)1nnnxxxnxSxxx;当1x时,2nSn.小结:错位相减法的步骤是:①在等式两边同时乘以等比数列{}nb的公比;②将两个等式相减;③利用等比数列的前n项和公式求和.)1(2)1(ann变式练习:求数列a,2a2,3a3,4a4,…,nan,…(a为常数)的前n项和。解:(1)若a=0,则Sn=0(2)若a=1,则Sn=1+2+3+…+n=(1)2nn(3)若a≠0且a≠1则Sn=a+2a2+3a3+4a4+…+nan,∴aSn=a2+2a3+3a4+…+nan+1∴(1-a)Sn=a+a2+a3+…+an-nan+1=∴Sn=当a=0时,此式也成立。∴Sn=五、分组求和法若数列的通项是若干项的代数和,可将其分成几部分来求.例5求数列11111246248162nn,,,,,的前n项和nS.23411111111(2462)(1)222222nnnSnnn.变式练习:求数列11111,2,3,4,392781的前n项和解:211223nnn数列求和基础训练1.等比数列{}na的前n项和Sn=2n-1,则2232221naaaa=413n2.设1357(1)(21)nnSn,则nS=(1)nn.3.1111447(32)(31)nn31nn.4.1111...243546(1)(3)nn=1111122323nn5.数列2211,(12),(122),,(1222),n的通项公式na12n,前n项和nS221nn111nnnaaaa)1(1)1(121aanaaaann)1(1)1(121aanaaaann6.;,212,,25,23,2132nn的前n项和为2332nnnS数列求和提高训练1.数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则20083211111aaaa(A)A.20094016B.20092008C.10042007D.20082007解:∵am+n=am+an+mn,∴an+1=an+a1+n=an+1+n,∴利用叠加法得到:2)1(nnan,∴)111(2)1(21nnnnan,∴)200911(2)20091200813121211(211112008321aaaa20094016.2.数列{an}、{bn}都是公差为1的等差数列,若其首项满足a1+b1=5,a1>b1,且a1,b1∈N*,则数列{nba}前10项的和等于(B)A.100B.85C.70D.55解:∵an=a1+n-1,bn=b1+n-1∴nba=a1+bn-1=a1+(b1+n―1)―1=a1+b1+n-2=5+n-2=n+3则数列{nba}也是等差数列,并且前10项和等于:85102134答案:B.3.设m=1×2+2×3+3×4+…+(n-1)·n,则m等于(A)A.3)1(2nnB.21n(n+4)C.21n(n+5)D.21n(n+7)3.解:因为an=n2-n.,则依据分组集合即得.答案;A.4.若Sn=1-2+3-4+…+(-1)n-1·n,则S17+S33+S50等于(A)A.1B.-1C.0D.2解:对前n项和要分奇偶分别解决,即:Sn=)(2)(21为偶为奇nnnn答案:A5.设{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则{cn}的前10项和为(A)A.978B.557C.467D.979解由题意可得a1=1,设公比为q,公差为d,则2212dqdq∴q2-2q=0,∵q≠0,∴q=2,∴an=2n-1,bn=(n-1)(-1)=1-n,∴cn=2n-1+1-n,∴Sn=978.答案:A6.若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a10=(A)()A.15B.12C.-12D.-15解析A设bn=3n-2,则数列{bn}是以1为首项,3为公差的等差数列,所以a1+a2+…+a9+a10=(-b1)+b2+…+(-b9)+b10=(b2-b1)+(b4-b3)+…+(b10-b9)=5×3=15.7.一个有2001项且各项非零的等差数列,其奇数项的和与偶数项的和之比为解:设此数列{an},其中间项为a1001,则S奇=a1+a3+a5+…+a2001=1001·a1001,S偶=a2+a4+a6+…+a2000=1000a1001.答案:100010018.若12+22+…+(n-1)2=an3+bn2+cn,则a=,b=,c=.解:原式=.6326)12()1(23nnnnnn答案:61;21;319.已知等差数列{an}的首项a1=1,公差d>0,且其第二项、第五项、第十四项分别是等比数列{bn}的第二、三、四项.(1)求数列{an}与{bn}的通项公式;(2)设数列{cn}对任意自然数n均有1332211nnnabcbcbcbc成立.求c1+c2+c3+…+c2014的值.解:(1)由题意得(a1+d)(a1+13d)=(a1+4d)2(d>0)解得d=2,∴an=2n-1,可得bn=3n-1(2)当n=1时,c1=3;当n≥2时,由nnnnaabc1,得cn=2·3n-1,故).2(32),1(31nncnn故c1+c2+c3+…+c2014=3+2×3+2×32+…+2×32002=32015.10.设数列{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列nSn的前n项和,求Tn.解析设等差数列{an}的首项为a1,公差为d,则Sn=na1+12n(n-1)d.∵S7=7,S15=75,∴7a1+21d=7,15a1+105d=75,即a1+3d=1,a1+7d=5,解得a1=-2,d=1.∴Snn=a1+12(n-1)d=-2+12(n-1).∴Sn+1n+1-Snn=12,∴数列nSn是首项为-2,公差为12的等差数列.∴Tn=14n2-94n.11.已知数列{an}的首项a1=23,an+1=2anan+1(1)证明:数列11na是等比数列;(2)求数列nan的前n项和Sn.解析(1)∵an+1=2anan+1,∴1an+1=an+12an=12+12an,∴1an+1-1=1121na,又a1=23,∴1a1-1=12≠0,∴1an-1≠0,∴1an+1-11an-1=12,∴数列11na是以12为首项,12为公比的等比数(2)由(1)知1an-1=12·nn21211即1an=12n+1∴nan=n2n+n.设Tn=12+222+323+…+n2n.......①则12Tn=122+223+…+n-12n+n2n+1.......②,①-②得12Tn=12+122+123+…+12n-n2n+1=21121121n-n2n+1=1-12n-n2n+1,∴Tn=2-12n-1-n2n=2-2+n2n.又∵1+2+3+…+n=nn+12,∴数列nan的前n项和Sn=2-2+n2n+nn+12=n2+n+42-n+22n.
本文标题:数列求和方法归纳
链接地址:https://www.777doc.com/doc-1906969 .html