您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 好带电粒子在有界磁场中运动
3、某些带电体是否考虑重力,要根据题目暗示或运动状态来判定磁场中的带电粒子一般可分为两类:1、带电的基本粒子:如电子,质子,α粒子,正负离子等。这些粒子所受重力和洛伦兹力相比小得多,除非有说明或明确的暗示以外,一般都不考虑重力。(但并不能忽略质量)。2、带电微粒:如带电小球、液滴、尘埃等。除非有说明或明确的暗示以外,一般都考虑重力。核心要点突破一、带电粒子在磁场中的运动带电粒子(不计重力)以一定的速度v进入磁感应强度为B的磁场.1.当v与B平行时,带电粒子做匀速直线运动.2.当v与B垂直时,带电粒子做匀速圆周运动.(1)运动规律①半径公式:r=mvqB②周期公式:T=2πmqB确定带电粒子(不计重力)在有界磁场中运动轨迹的思路与步骤找圆心,画圆弧,求半径,定圆心角OV0PMV(1)已知入射速度方向和出射速度方向,可以通过入射点和出射点分别作垂直与入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心1.圆心的寻找VPMO1.圆心的确定(2)已知入射速度方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心.αα偏转角弦切角圆心角结论:(1)偏转角等于圆心角。(2)弦切角等于圆心角的一半。利用磁场控制带电粒子运动tan2rR0mvRqB0tan2qBrmv可见:对于一定的带电粒子。可以通过调节B和V0的大小来控制粒子的偏转角度。偏转角磁偏转的特点:只改变速度的方向,不改变速度的大小。利用磁场控制带电粒子运动3.运动时间的确定T2qBmT2OV0PMVθtT0360练习、如图1所示,两个相同的带电粒子,不计重力,同时从A孔沿AD方向射入一正方形空腔的匀强磁场中,它们的轨迹分别为a和b,则它们的速率和在空腔里的飞行时间关系是()A.va=vb,tatbB.vavb,tatbC.vavb,ta=tbD.vavb,tatbDA××××××××××××CB××××××××××××××ab图1BCDBvα例1、如图,在B=9.1x10-4T的匀强磁场中,C、D是垂直于磁场方向的同一平面上的两点,相距d=0.05m。在磁场中运动的电子经过C点时的速度方向与CD成α=300角,并与CD在同一平面内,问:(1)若电子后来又经过D点,则电子的速度大小是多少?(2)电子从C到D经历的时间是多少?(电子质量me=9.1x10-31kg,电量e=1.6x10-19C)8.0x106m/s6.5x10-9s1、带电粒子在无界磁场中的运动练习:氘核和α粒子,从静止开始经相同电场加速后,垂直进入同一匀强磁场作圆周运动.则这两个粒子的动能之比为多少?轨道半径之比为多少?周期之比为多少?解:(1)qUEk21qqEEDkkDqBmvr(2)qBmEk21241212kkDDDDEmEmqqrrqBmT2(3)11422DDDqmqmTT例2、如图直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?MNBOvBemvs2答案为射出点相距Bqmt34时间差为关键是找圆心、找半径和用对称。2、带电粒子在半无界磁场中的运动练习、如图,虚线上方存在无穷大的磁场,一带正电的粒子质量m、电量q,若它以速度v沿与虚线成300、900、1500、1800角分别射入,请你作出上述几种情况下粒子的轨迹、并求其在磁场中运动的时间。入射角300时qBmqBmt3261入射角900时qBmqBmt221入射角1500时qBmqBmt35265粒子在磁场中做圆周运动的对称规律(记下):从同一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角相等。例3:如图所示,在y0的区域内存在匀强磁场,磁场方向如图,磁感应强度为B。一带正电的粒子以速度v从O点射入磁场,入射方向在xoy平面内,与x轴正向的夹角为θ。若粒子射出磁场的位置与O点的距离为L,求该粒子的比荷q/m。xyopθvxyopθvθθv洛fθ入射速度与边界夹角=出射速度与边界夹角xOPθvθθv洛fθθyAy解析:设粒子进入磁场做圆周运动的半径为R,qBmvRsin2sin2LRLR在RtΔPOA中,PO=L,PA=2R,则xOPθvθθv洛fθθALBvmqsin23、经历时间由得出。3、穿过双边界磁场区。ROBvLy1、偏转角由sinθ=L/R求出。2、侧移由R2=L2-(R-y)2解出。BqmtθθdBeθv例3如图所示,一束电子(电荷量为e)以速度v垂直射入磁感应强度为B、宽度为d的匀强磁场,穿出磁场时的速度方向与原来入射方向的夹角θ=30°。求:(1)电子的质量m=?(2)电子在磁场中的运动时间t=?Oθrs30°1.圆心在哪里?2.轨迹半径是多少?OBdvr=d/sin30o=2dr=mv/qBt=(30o/360o)T=T/12T=2πm/qBT=2πr/v小结:rt/T=30o/360oA=30°vqvB=mv2/rt=T/12=πm/6qB3、偏转角=圆心角1、两洛伦兹力的交点即圆心2、偏转角:初末速度的夹角。4.穿透磁场的时间如何求?3、圆心角θ=?θt=T/12=πd/3vm=qBr/v=2qdB/vFF例、如图,若电子的电量e,质量m,磁感应强度B及宽度d已知,若要求电子不从右边界穿出,则初速度v0应满足什么条件?deBv0deBv0r+rcos60º=ddeBv0变化1:若v0向上与边界成60º角,则v0应满足什么条件?变化2:若v0向下与边界成60º角,则v0应满足什么条件?r-rcos60º=d练、如图,在POQ区域内分布有磁感应强度为B的匀强磁场,磁场方向垂直于纸面向里,有一束正离子流(不计重力),沿纸面垂直于磁场边界OQ方向从A点垂直边界射入磁场,已知OA=d,∠POQ=45º,离子的质量为m、带电荷量为q、要使离子不从OP边射出,离子进入磁场的速度最大不能超过多少?POQAv0BAQBPvB代入数据得:3=(2-)dQM=rm-rm2-d2PH=2d,QN=d,例、如图,A、B为水平放置的足够长的平行板,板间距离为d=1.0×10-2m,A板上有一电子源P,Q点在P点正上方B板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范围内的电子。若垂直纸面内加一匀强磁场,磁感应强度B=9.1×10-3T,已知电子质量m=9.1×10-31kg,电子电量q=1.6×10-19C,不计电子重力和电子间的相互作用力,且电子打到板上均被吸收,并转移到大地,求电子击在A、B两板上的范围。解析:rmrmMNH电子打在A板上的范围是PH段。电子打在B板上的范围是MN段。因qvB=mv2/rm得:rm=2daOdbcBv0R1例、如图,一端无限伸长的矩形区域abcd内存在着磁感应强度大小为B,方向垂直纸面向里的匀强磁场。从边ad中点O射入一速率v0、方向与Od夹角θ=30º的正电粒子,粒子质量为m,重力不计,带电量为q,已知ad=L。(1)要使粒子能从ab边射出磁场,求v0的取值范围。(2)取不同v0值,求粒子在磁场中运动时间t的范围?(3)从ab边射出的粒子在磁场中运动时间t的范围。R1+R1sin30º=L/2解:(1)得R1=L/3R2R2-R2cos60º=L/2得:R2=L。(1)≥v0≥mqBLmqBL3例、如图,一端无限伸长的矩形区域abcd内存在着磁感应强度大小为B,方向垂直纸面向里的匀强磁场。从边ad中点O射入一速率v0、方向与Od夹角θ=30º的正电粒子,粒子质量为m,重力不计,带电量为q,已知ad=L。(1)要使粒子能从ab边射出磁场,求v0的取值范围。(2)取不同v0值,求粒子在磁场中运动时间t的范围?(3)从ab边射出的粒子在磁场中运动时间t的范围。解:(2)aOdbcBv0R1R2解:(3)≤t≤5m6Bq4m3Bq≤t≤m3Bq5m3Bq例、如图,磁感应强度为B的匀强磁场垂直于纸面向里,PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。现从点O以同一速率将相同的带负电粒子向纸面内各个不同的方向射出,它们均做半径为r的匀速圆周运动,求带电粒子打在边界PQ上的范围(粒子的重力不计)。分析:从O点向各个方向发射的粒子在磁场中做匀速圆周运动的半径r相同,O为这些轨迹圆周的公共点。O2rPQPQOr(31)MNr答案:O2rrQPMN练、如图,真空室内存在方向垂直纸面向里,大小B=0.6T的匀强磁场,内有与磁场方向平行的板ab,在距ab距离为l=16cm处,有一点状的放射源S向各个方向发射α粒子,α粒子的速度都是v=3.0×106m/s,已知α粒子的电荷与质量之比q/m=5.0×107C/kg,现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度。baSlBcm10qBmvR即:2RlR。P1NP2cm8221--)Rl(RNPcm122222-l)R(NP∴P1P2=20cm解:α粒子带正电,沿逆时针方向做匀速圆周运动,轨道半径R为2RR2RMNO2RR2RMNO2R2R2RMNOR2R2RMNOD.A.B.C.MNBOA例、如图,水平放置的平板MN上方有方向垂直于纸面向里的匀强磁场,磁感应强度为B,许多质量为m,带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域,不计重力,不计粒子间的相互影响。下列图中阴影部分表示带电粒子可能经过的区域,其中R=mv/qB,哪个图是正确的?()……以速率v沿纸面各个方向由小孔O射入磁场2RR2RO2RR2RO2R2R2ROR2R2ROD.A.B.C.dm-qA一条船在静水中的速度为v,河水的流速为V,河宽为d。问船头方向与河岸的夹角为多少时,过河的时间最短?dA题2vxvy河宽一定,欲使过河时间最短,须使vx有最大值。当vx=v时,有过河的最短时间:vdtv一个垂直纸面向里的有界匀强磁场形状如图所示,磁场宽度为d。在垂直B的平面内的A点,有一个电量为-q、质量为m、速度为v的带电粒子进入磁场,请问其速度方向与磁场边界的夹角为多少时粒子穿过磁场的时间最短?(已知mv/Bqd)题1dm-qAvOαRd带电粒子的速度方向垂直于边界进入磁场时间最短mvdBqRd=sin=BqmvdBqmarcsin=vmvdBqRarcsin=v/R=t=一个垂直纸面向里的有界匀强磁场形状如图所示,磁场宽度为d。在垂直B的平面内的A点,有一个电量为-q、质量为m、速度为v的带电粒子进入磁场,请问其速度方向与磁场边界的夹角为多少时粒子穿过磁场的时间最短?(已知mv/Bqd)题1——模型识别错误!!!dm-qAvOαRd对象模型:质点过程模型:匀速圆周运动规律:牛顿第二定律+圆周运动公式条件:要求时间最短vst速度v不变,欲使穿过磁场时间最短,须使s有最小值,则要求弦最短。一个垂直纸面向里的有界匀强磁场形状如图所示,磁场宽度为d。在垂直B的平面内的A点,有一个电量为-q、质量为m、速度为v的带电粒子进入磁场,请问其速度方向与磁场边界的夹角为多少时粒子穿过磁场的时间最短?(已知mv/Bqd)题1dm-qAvθO中垂线θ与边界的夹角为(90º-θ)BqmvdBqm2arcsinRvt22mvdBqRd22/sin一个垂直纸面向里的有界匀强磁场形状如图所示,磁场宽度为d。在垂直B的平面内的A点,有一个电量为-q、质量为m、速度为v的带电粒子进入磁场,请问其速度方向与磁场边界的夹角为多少时粒子穿过磁场的时间最短?(已知mv/Bqd)题1启示:要正确识别物理模型BvO边界圆带电粒子在匀强磁场中仅受磁场力作用时做匀速圆周运动,因此,带电粒子在圆形匀强磁场中的运动往往涉及粒子轨迹圆与磁场边界圆的两圆相交问
本文标题:好带电粒子在有界磁场中运动
链接地址:https://www.777doc.com/doc-1911961 .html