您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 第12章MRP_ERP(一次课)
电气07-2师徒祝大家考试成功(仅供参考,严禁它用)复习版绪论1、了解电力系统自动化的重要性。①被控对象复杂而庞大。②被控参数很多。③干扰严重。2、掌握电力系统自动化的基本内容。在跨地区的电力系统形成后,必须建立一个机构对电力系统的运行进行统一管理和指挥,合理调度电力系统中各发电厂的出力并及时综合处理影响整个电力系统正常运行的事故和异常情况,这个机构称为电力系统调度中心。①按运行管理的区域划分:☞电网调度自动化☞发电厂自动化(火电厂自动化、水电厂自动化)☞变电站自动化☞配电网自动化。②从电力系统自动控制的角度划分:☞电力系统频率和有功功率控制☞电力系统电压和无功功率控制☞发电机同步并列的原理。第1章发电机的自动并列1、掌握并列操作的概念及对并列操作的要求。☞并列的概念:将一台发电机投入电力系统并列运行的操作,称并列操作。发电机的并列操作又称为“并车”、“并网”、“同期”。☞对并列操作的基本要求:①并列断路器合闸时,冲击电流应尽可能的小,其瞬时最大值不宜超过1~2倍的额定电流。②发电机组并入电网后,应能迅速进入同步运行状态,进入同步运行的暂态过程要短,以减少对电力系统的扰动。2、掌握并列操作的两种方式及各自的特点。☞并列操作的两种方式:准同期并列(一般采用)、自同期并列(很少采用)。☞准同期并列的概念:发电机在并列合闸前已励磁,当发电机频率、电压相角、电压大小分别和并列点处系统侧的频率、电压相角、电压大小接近相等时,将发电机断路器合闸,完成并列操作,这种方式称为准同期。☞自同期并列概念:将一台未加励磁的发电机组升速到接近于电网频率,在滑差角频率不超过允许值,机组的加速度小于某一给定值的条件下,先合并列断路器QF,接着合励磁开关,给转子加励磁电流,在发电机电势逐步增长的过程中,由电力系统将并列机组拉入同步运行。优点:操作简单,并列迅速,易于实现自动化。缺点:冲击电流大,对电力系统扰动大,不仅会引起电力系统频率振荡,而且会在自同期并列的机组附近造成电压瞬时下降。适用:只有在电力系统事故、频率降低时使用。自同期并列不能用于两个系统之间的并列,也不用于汽轮发电机组。3、掌握准同期并列的三个理想条件,了解并列误差对并列的影响。☞(1)fG=fX:待并发电机频率与系统频率相等,即滑差(频差)为零;(2)UG=UX:待并发电机电压与系统电压的幅值相等,即压差为零;(3)δe=0:断路器主触头闭合瞬间,待并发电机电压与系统电压间的瞬时相角差为零。?☞①电压幅值差对并列的影响:产生的冲击电流,在只存在电压差的情况下,并列机组产生的冲击电流主要为无功冲击电流。冲击电流的电动力对发电机绕组产生影响,由于定子绕组端部的机械强度最弱,所以须特别注意对它所造成的危害,必须限制冲击电流。②合闸相角差对并列的影响:当相角差较小时,冲击电流主要为有功电流分量。说明合闸后发电机立刻向电网输出有功功率,使机组联轴受到突然冲击,这对机组和电网运行都是不利的。③合闸频率差对并列的影响:在有滑差的情况下,将机组投入电网,需经过一段加速或减速的过程,才能使机组与系统在频率上“同步”。加速或减速力矩会对机组造成冲击。(滑差越大,并列时的冲击就越大,因而应该电气07-2师徒祝大家考试成功(仅供参考,严禁它用)复习版严格限制并列时的滑差。)4、掌握自动准同期装置的组成及各组成部分的任务。☞自动准同期装置的组成①频差控制单元;检测UG与UX间的滑差角频率,且调节发电机转速,使发电机电压的频率接近于系统频率。②电压差控制单元;检测UG与UX间的电压差,且调节发电机电压UG,使它与UX间的电压差小于规定值。③合闸信号控制单元;检测并列条件,当待并机组的频率和电压都满足并列条件时,控制单元就选择合适的时间(恒定越前时间)发出合闸信号,使并列断路器的主触头接通时,相角差为零。?5、了解模拟式准同期装置的工作原理。模拟式并列装置为简化电路,在一个滑差周期Ts时间内,把ωs假设为恒定。数字式并列装置可以克服这一假设的局限性,采用较为精确的公式,按照δe当时的变化规律,选择最佳的越前时间发出合闸信号,可以缩短并列操作的过程,提高了自动并列装置的技术性能和运行可靠性。数字式并列装置由硬件和软件组成。?6、了解数字式准同期装置的工作原理。第2章同步发电机励磁自动控制系统?1、理解电力系统无功功率控制的必要性;☞发电机是系统中主要的无功电源。为了保证系统的电压质量和无功潮流合理分布,要求“合理控制”电力系统中并联运行发电机输出的无功功率。?2、掌握同步发电机励磁系统的任务;①控制发电机端电压:在发电机不经升压直接向用户供电的简单系统中,若供电线路不长,线路上电压损耗不大,单靠调节发电机的励磁来控制发电机的端电压就能满足负荷对电压质量的要求。②合理分配并联运行发电机间的无功功率:发电机是系统中主要的无功电源。为了保证系统的电压质量和无功潮流合理分布,要求“合理控制”电力系统中并联运行发电机输出的无功功率。“合理控制”的含义:(1)每台发电机发出的无功功率数量要合理;(2)当系统电压变化时,每台发电机输出的无功功率要随之自动调节,而且调节量要合理。③提高同步发电机并联运行的稳定性④改善电力系统的运行条件:当电力系统由于种种原因,出现短时低电压时,发电机的励磁自动控制系统可发挥其调节功能,即大幅度地快速增加励磁电流以提高系统电压来改善系统运行条件。⑤防止水轮发电机过电压:水轮发电机在因系统故障被切除或突然甩负荷时,一方面由于水轮发电机组的机械转动惯量很大,另一方面为了引水管道的安全,不能迅速关闭水轮机的导水叶,致使发电机的转速急剧上升。如果不采取措施迅速降低发电机的励磁电流,则发电机感应电势有可能升高到危及定子绕组绝缘的程度。因此要求励磁自动控制系统能实现强行减磁功能。?3、掌握同步发电机励磁控制系统的组成及各组成部分的作用。☞同步发电机励磁控制系统的组成:①励磁功率单元(励磁功率单元向同步发电机提供直流电流。)②励磁调节器(检测和综合系统运行状态的信息,经相应处理后,产生控制信号,控制励磁功率单元,以得到所要求的发电机励磁电流。)4、了解各种类型励磁功率单元的特点(即交、直流励磁机励磁系统的基本构成、特点及使用范围)。☞直流励磁机励磁系统按励磁机励磁方式不同分:自励式直流励磁机励磁系统、他励式直流励磁机励磁系统☞交流励磁机励磁功率单元的组成:交流励磁机(与发电机同轴)、硅整流器电气07-2师徒祝大家考试成功(仅供参考,严禁它用)复习版5、了解励磁系统中转子磁场的建立和灭磁的作用及原理。☞磁场的建立:在外部事故情况下,需要发电机转子磁场能迅速增强,达到尽可能高的数值,以弥补无功功率的缺额。两个指标:①强励顶值:转子励磁电压的最大值(1.8~2倍额定电流)②响应比:磁场建立的速度☞灭磁:当转子磁场已经建立起来后,如果由于某种原因(发电机绕组内部故障等)需要强迫发电机立即退出工作,在断开发电机断路器的同时,必须使转子磁场尽快的消失,否则转子磁场内存储的大量能量迅速消释,会使电机内产生危险的过电压。6、掌握自动励磁调节器的基本原理,了解励磁调节器静态特性的合成;掌握同步发电机励磁调节器静态特性的调整,了解自动励磁调节器的辅助控制。☞自动励磁调节器的基本原理:励磁调节装置(自动励磁调节器)是一个闭环比例调节器。输入量:发电机电压UG;输出量:励磁机的励磁电流或是转子电流,通称为IAVR。☞同步发电机励磁调节器静态特性的调整:对同步发电机电压调节特性进行调整的目标,主要是为了满足运行方面的要求:①保证并列运行发电机组间无功功率的合理分配(通过调整各发电机的调差系数,使其相等即可实现);②保证发电机能平稳地投入和退出运行,而不发生冲击现象。(通过上下平移发电机调节特性曲线即可实现)7、了解励磁控制系统的动态特性的分析方法。第3章电力系统频率及有功功率的自动调节1、了解电力系统频率及有功功率控制的必要性。☞电力系统频率控制的必要性:1)频率对电力用户的影响①电力系统频率变化会引起异步电动机转速变化②电力系统频率波动会影响某些测量和控制用的电子设备的准确性和性能,频率过低时有些设备甚至无法工作。③电力系统频率降低会使电动机的转速和输出功率降低,导致其所带动机械的转速和出力降低,影响电力用户设备的正常运行。2)频率对电力系统的影响①频率下降时,汽轮机叶片的振动会变大,轻则影响使用寿命,重则可能产生裂纹。②频率下降到47~48HZ时,由异步电功机驱动的送风机等火电厂厂用机械的出力随之下降,使火电厂锅炉和汽轮机的出力随之下降,从而使火电厂发电机发出的有功功率下降,这种趋势如果不能及时制止,就会出现频率雪崩,会造成大面积停电,甚至使整个系统瓦解。③在核电厂中,反应堆冷却介质泵对供电频率有严格要求。当频率降到一定数值时,冷却介质泵即自动跳开,使反应堆停止运行。④电力系统频率下降时,异步电动机和变压器的励磁电流增加,使异步电动机和变压器的无功消耗增加,引起系统电压下降。如果电力系统原来的电压水平偏低,在频率下降到一定值时可能出现电压快速而不断地下降,出现电压雪崩,会造成大面积停电,甚至使系统瓦解。☞电力系统有功功率控制的必要性:①维持电力系统频率在允许范围之内②提高电力系统运行的经济性③保证联合电力系统的协调运行2、掌握电力系统负荷的功率频率特性,理解负荷频率调节效应系数的含义;掌握发电机组的功率频率特性,理解调差特性与有功功率分配的关系,掌握调速器的失灵区对调节特性的影响;掌握电力系统的频率特性,理解电力系统功率频率特性系数的含义,掌握一次调频与二次调频的概念及特点。电气07-2师徒祝大家考试成功(仅供参考,严禁它用)复习版☞负荷的功率—频率特性定义:当系统频率变化时,整个系统的有功负荷也要随着改变,即Pl=F(f),这种有功负荷随频率而改变的特性称为负荷的功率—频率特性,即负荷的静态频率特性。☞当系统内机组的输入功率和负荷功率间失去平衡时,系统负荷也参与了调节作用,这种特性有利于系统中有功功率在另一频率下重新平衡。这种现象称为负荷的频率调节效应。通常用负荷的频率调节效应系数KL﹡来衡量负荷调节效应的大小。☞发电机组的功率—频率特性:通常把由于频率变化而引起发电机组输出功率变化的关系称为发电机组的功率—频率特性或调节特性。发电机组的功率—频率特性取决于调速系统的特性。☞调差特性与有功功率分配的关系:当发电机组的功率增量用各自的标么值表示时,发电机组间的功率分配与机组的调差系数成反比,与单位调节功率成正比。☞调速器的失灵区对调节特性的影响:由于调速器的频率调节特性是条带子,因此会导致各并联运行的发电机组间有功功率的分配产生误差。①△PW*与失灵度成正比,而与调差系数成反比。②不灵敏区的存在虽然会引起一定的功率误差或频率误差。但是,不灵敏区不能太小或完全没有。☞电力系统的频率特性:电力系统主要由发电机组、输电网络及负荷组成,发电机组的功率—频率特性与负荷的功率、频率特性曲线的交点就是电力系统频率的稳定运行点。☞一次调频的概念:当电力系统负荷发生变化引起系统频率变化时,系统内并联运行机组的调速器会根据电力系统频率变化自动调节进入它所控制的原动机的动力元素,改变输入原动机的功率,使系统频率维持在某一值运行,这就是电力系统频率的一次调整,也称为一次调频。二次调频概念:当机组负荷变动引起频率变化时,利用同步器(调频器)平移机组工频特性来调节系统频率,称为电力系统频率的二次调节,也称为二次调频。3、了解电力系统自动调频的方法,理解积差调节与改进积差调节法的特点,掌握积差调节法的两种实现方式。☞电力系统自动调频方法①有差调频法②主导发电机法③积差调节法☞积差调节法的特点:随着负荷的变化,频率发生变化,产生频率偏差,△f≠0,即∫△fdt就不断积累,调频器动作移动调速器调节特性,改变进入机组的进汽(或进水)量,使频率力求恢复额定值,频率调节过程只能在△f=0时结束。此时系统中的功率达到新的平衡。积差调节法的缺点:频率的积差信号滞后于频率瞬时值的变化,因此调节过程缓慢。不能保证频率的瞬时偏差在规定范围内。改进:通常不单纯采用积差调节,
本文标题:第12章MRP_ERP(一次课)
链接地址:https://www.777doc.com/doc-19206 .html