您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 高三物理电磁感应单棒问题(二)
1新城中学2014届高三物理复习配套练习——单棒在磁场中的运动(二)(导体棒在恒力作用下做变加速运动然后匀速)计算题郑光辉整理班级姓名学号导体棒在恒定外力的作用下由静止开始运动,速度增大,感应电动势不断增大,安培力、加速度均与速度有关,当安培力等于恒力时加速度等于零,导体棒最终匀速运动。整个过程加速度是变量,不能应用运动学公式。发电式单棒1.电路特点:导体棒相当于电源,当速度为v时,电动势E=Blv2.安培力的特点:安培力为阻力,并随速度增大而增大3.加速度特点:加速度随速度增大而减小4.运动特点:a减小的加速运动5.最终特征:匀速运动6.两个极值:(1)v=0时,有最大加速度:(2)a=0时,有最大速度:7.稳定后的能量转化规律:8.起动过程中的三个规律:(1)动量关系:(2)能量关系:(3)瞬时加速度:1、如图3所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L。M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下。导轨和金属杆的电阻可忽略。让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。(1)由b向a方向看到的装置如图4所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。BFBIlBlvBlRr22BlvRr=vBFFmgam22()FBlvgmmRrmFmgamBFFmgam220()FBlvgmmRr22()()mFmgRrvBl2()mmmBLvFvmgvRr0mFtBLqmgtmv212EmFsQmgSmvBFFmgam220()FBlvgmmRrBlsqnRrRrFF22、两根光滑的足够长直金属导轨MN、M′N′平行置于竖直面内,导轨间距为l,导轨上端接有阻值为R的电阻,如图所示。质量为m、长度也为l、阻值为r的金属棒ab垂直于导轨放置,且与导轨保持良好接触,其他电阻不计。导轨处于磁感应强度为B、方向水平向里的匀强磁场中,ab由静止释放,在重力作用下向下运动,求:(1)ab运动的最大速度的大小;(2)若ab从释放至其运动达到最大速度时下落的高度为h,此过程中金属棒中产生的焦耳热为多少?33、如图7所示,处于匀强磁场中的两根足够长.电阻不计的平行金属导轨相距lm,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg.电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.求:(1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小(3)在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g=10rn/s2,sin37°=0.6,cos37°=0.8)4、如下图所示,两根光滑的平行金属导轨MN、PQ处于同一水平面内,相距L=0.5m,导轨的左端用R=3Ω的电阻相连,导轨电阻不计,导轨上跨接一电阻r=1Ω的金属杆ab,质量m=0.2kg,整个装置放在竖直向下的匀强磁场中,磁感应强度B=2T,现对杆施加水平向右的拉力F=2N,使它由静止开始运动,求:(1)杆能达到的最大速度多大?最大加速度为多大?(2)杆的速度达到最大时,a、b两端电压多大?此时拉力的瞬时功率多大?(3)若已知杆从静止开始运动至最大速度的过程中,R上总共产生了10.2J的电热,则此过程中拉力F做的功是多大?此过程持续时间多长?(4)若杆达到最大速度后撤去拉力,则此后R上共产生多少热能?其向前冲过的距离会有多大?图745、光滑水平导轨宽L=1m,电阻不计,左端接有6V6W的小灯。导轨上垂直放有一质量m=0.5kg、电阻r=2Ω的直导体棒,导体棒中间用细绳通过定滑轮吊一质量为M=1kg的钩码,钩码距地面高h=2m,如图所示。整个导轨处于竖直方向的匀强磁场中,磁感应强度为B=2T。释放钩码,在钩码落地前的瞬间,小灯刚好正常发光。(不计滑轮的摩擦,取g=10m/s2)求:⑴钩码落地前的瞬间,导体棒的加速度;⑵在钩码落地前的过程中小灯泡消耗的电能;⑶在钩码落地前的过程中通过电路的电量。6、如图所示,光滑的平行水平金属导轨MN、PQ相距l,在M点和P点间连接一个阻值为R的电阻,在两导轨间cdfe矩形区域内有垂直导轨平面竖直向上、宽为d的匀强磁场,磁感应强度为B。一质量为m、电阻为r、长度也刚好为l的导体棒ab垂直搁在导轨上,与磁场左边界相距d0。现用一个水平向右的力F拉棒ab,使它由静止开始运动,棒ab离开磁场前已做匀速直线运动,棒ab与导轨始终保持良好接触,导轨电阻不计,F随ab与初始位置的距离x变化的情况如图,F0已知。求:(1)棒ab离开磁场右边界时的速度(2)棒ab通过磁场区域的过程中整个回路所消耗的电能(3)d0满足什么条件时,棒ab进入磁场后一直做匀速运动57、水平面上两根足够长的不光滑金属导轨固定放置,间距为L,一端通过导线与阻值为R的电阻连接,导轨上放一质量为m的金属杆,金属杆与导轨的电阻不计,磁感应强度方B的匀强磁场方向竖直向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动,当改变恒定拉力F大小时,相对应的匀速运动速度υ大小也会变化,F与υ的关系如图所示.F0、υ0为已知量.求:(1)金属杆与导轨间的滑动摩擦力f==?(2)当恒定外力为2F0时,杆最终做匀速运动的速度大小?8、如图所示,两根正对的平行金属直轨道MN、M'N'位于同一水平面上,两轨道之间的距离l=0.50m。轨道的MM'端之间接一阻值R=0.50的定值电阻,NN'端与两条位于竖直面内的半圆形光滑金属轨道NP、N'P'平滑连接,两半圆轨道的半径均为R0=0.50m。直轨道的右端处于竖直向下、磁感应强度B=0.60T的匀强磁场中,磁场区域的宽度d=0.80m,且其右边界与NN'重合。现有―质量m=0.20kg、电阻r=0.10的导体杆ab静止在距磁场的左边界s=2.0m处。在与杆垂直的水平恒力F=2.0N的作用下ab杆开始运动,当运动至磁场的左边界时撤去F,导体杆ab穿过磁场区域后,沿半圆形轨道运动,结果恰好能通过半圆形轨道的最高点PP'。已知导体杆ab在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab与直轨道之间的动摩擦因数=0.10,轨道的电阻可忽略不计,取g=10m/6s2。求:(1)导体杆刚进入磁场时,通过导体杆的电流大小和方向;(2)导体杆刚穿出磁场时的速度大小;(3)导体杆穿过磁场的过程中整个电路产生的焦耳热。*****9、如图所示,长为L,电阻为r=0.30Ω、质量为m=0.10kg的金属棒CD垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也为L,金属棒与导轨间接触良好,导轨电阻不计,导轨左端接有阻值R=0.50Ω的电阻。量程为0~3.OA的电流表串接在一条导轨上,量程为0~1.OV的电压表接在电阻R的两端。垂直导轨平面的匀强磁场向下穿过平面。现以向右恒定外力F使金属棒向右移动。当金属棒以V=2.0m/s的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏。问:(1)此满偏的电表是什么表?说明理由。(2)拉动金属棒的外力F多大?(3)若此时撤去外力F,金属棒将逐渐慢下来,最终停止在导轨上。求从撤去外力到金属棒停止运动的过程中通过电阻R的电量。****10、如图所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d为0.5m,7左端通过导线与阻值为2的电阻R连接,右端通过导线与阻值为4的小灯泡L连接,在CDEF矩形区域内有竖直向上的匀强磁场,CE长为2m,CDEF区域内磁场的磁感应强度B随时间变化如图所示,在t=0时,一阻值为2的金属棒在恒力F作用下由静止开始从AB位置沿导轨向右运动,当金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流强度;(2)恒力F的大小;(3)金属棒的质量。LFRABCDEFBt(s)12B(T)0248811、如图所示,两足够长的平行光滑的金属导轨MN、PQ相距为L=1m,导轨平面与水平面夹角,导轨电阻不计。磁感应强度为B1=2T的匀强磁场垂直导轨平面向上,长为L=1m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m1=2kg、电阻为R1=1。两金属导轨的上端连接右侧电路,电路中通过导线接一对水平放置的平行金属板,两板间的距离和板长均为d=0.5m,定值电阻为R2=3,现闭合开关S并将金属棒由静止释放,重力加速度为g=10m/s2,试求:(1)金属棒下滑的最大速度为多大?(2)当金属棒下滑达到稳定状态时,整个电路消耗的电功率P为多少?(3)当金属棒稳定下滑时,在水平放置的平行金属间加一垂直于纸面向里的匀强磁场B2=3T,在下板的右端且非常靠近下板的位置有一质量为m2=3×10―4kg、带电量为q=-1×10-4C的液滴以初速度v水平向左射入两板间,该液滴可视为质点。要使带电粒子能从金属板间射出,初速度v应满足什么条件?9高三物理复习配套练习——单棒在磁场中的运动(二)答案1、解析:(1)重力mg,竖直向下,支持力N,垂直斜面向上,安培力F,沿斜面向上,如图所示(2)当ab杆速度为v时,感应电动势E=BLv,此时电路中电流IERBLvR。ab杆受到安培力F=BIL=BLvR22。根据牛顿运动定律,有mgsinθ-F=ma,即mgsinθ-BLvRma22。所以a=gsinθ-BLvmR22。(3)当a=0,即BLvR22=mgsinθ时,ab杆达到最大速度vm。所以vmgRBLmsin22。2、解:(1)设ab上产生的感应电动势为E,回路中的电流为I,电路总电阻为R+r,则最后ab以最大速度匀速运动,有①由闭合电路欧姆定律有②③由①②③方程解得④(2)设在下滑过程中整个电路产生的焦耳热为Q1,ab棒上产生的焦耳热为Q2,则由能量守恒定律有:⑤又有⑥联立④⑤⑥解得:3、(1)金属棒开始下滑的初速为零,根据牛顿第二定律:mgsinθ-μmgcosθ=ma由上式解得a=10×(O.6-0.25×0.8)m/s2=4m/s2(2)设金属棒运动达到稳定时,速度为v,所受安培力为F,棒在沿导轨方向受力平衡mgsinθ一μmgcos0一F=0此时金属棒克服安培力做功的功率等于电路中电阻R消耗的电功率:P=Fv由以上两式解得8/10/0.210(0.60.250.8)PvmsmsF(3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为BvBlIR,P=I2R由以上两式解得820.4101PRBTTvl由右手定则可知磁场方向垂直导轨平面向上。104、解(1)由题意得:F=BIL,,V=8m/s,(2),(3),代入得:S=10m,代入得:t=2.05s(4),代入得:=4.8J,代入得:S=6.4m5、解:⑴小灯的电阻小灯正常发光时的电流⑵∵∴根据能量守恒得根据串联电路中电功的分配规律有⑶6、解:(1)设离开右边界时棒ab速度为,则有对棒有:解得:(2)在ab棒运动的整个过程中,根据动能定理:由功能关系:解得:(3)设棒刚进入磁场时的速度为,则11有当,即时,进入磁场后一直匀速运动;7、解:(1)当恒定外力为F0,金屈杆最后做匀速运动时,设杆中的感应电动势能为El,感应电流为t1,杆受到的安培力为F1,则…①……②…③…④…⑤…⑥……⑦(2)当恒定外力为2F0时,设金属杆最终做匀速运动的速度为υ,由⑥式同理可得…⑧将⑦代入⑧得…⑨…⑩评分标准:本题满分16分,其中①②③式各1分
本文标题:高三物理电磁感应单棒问题(二)
链接地址:https://www.777doc.com/doc-1937287 .html