您好,欢迎访问三七文档
基因工程综述班级:生物技术姓名:林治淮学号:1102021046摘要:基因工程(geneticengineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。关键词:基因工程研究进展研究领域基因工程是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。基因工程自20世纪70年代兴起之后,经过20多年的发展历程,取得了惊人的成绩,特别是近十年来,基因工程的发展更是突飞猛进。基因转移、基因扩增等技术的应用不仅使生命科学的研究发生了前所未有的变化,而且在实际应用领域──医药卫生、农牧业、食品工业、环境保护等方面也展示出美好的应用前景。1.基因工程与医药卫生目前,基因工程在医药卫生领域的应用非常广泛,主要包括以下两个方面。在药品生产中,有些药品是直接从生物体的组织、细胞或血液中提取的。由于受原料来源的限制,价格十分昂贵。用基因工程方法制造的“工程菌①”,可以高效率地生产出各种高质量、低成本的药品。如胰岛素、干扰素和乙肝疫苗等。基因工程药品是制药工业上的重大突破。胰岛素是治疗糖尿病的特效药。一般临床上给病人注射用的胰岛素主要从猪、牛等家畜的胰腺中提取,每100kg胰腺只能提取4~5g胰岛素。用这种方法生产的胰岛素产量低,价格昂贵,远远不能满足社会的需要。1979年,科学家将动物体内能够产生胰岛素的基因与大肠杆菌的DNA分子重组,并且在大肠杆菌内表达获得成功。这样,用2000L大肠杆菌培养液就可以提取100g胰岛素,相当于从2t猪胰腺中提取的量。1982年,美国一家基因公司用基因工程方法生产的胰岛素开始投入市场,其售价比用传统方法生产的胰岛素的售价降低了30%~50%。目前,用基因工程方法生产的药物已经有六十余种,除胰岛素、干扰素外,还有白细胞介素、溶血栓剂、凝血因子、人造血液代用品,以及预防乙肝、狂犬病、百日咳、霍乱、伤寒、虐疾等疾病的各类疫苗。其中一部分药品已经商品化,还有一部分处于临床试验阶段。我国的第一个生物工业园区──上海生物技术工业园区已经正式兴建。1997年,我国自己生产的白细胞介素-2、干扰素、乙肝疫苗、人生长激素等几种基因工程药物也已经投产。2.基因工程与农牧业、食品工业基因工程在农牧业生产上的应用主要是培育高产、优质或具有特殊用途的动植物新品种。近几年来,利用基因工程方法培养的转基因动植物在农业和畜牧业生产上取得了一系列的突破,尤其是在农业生产上推出了一批创新品种,显示出了巨大的发展潜力。基因工程在农业方面的应用主要表现在两个方面。首先,是通过基因工程技术获得高产、稳产和具有优良品质的农作物。例如,用基因工程的方法可以改善粮食作物的蛋白质含量。1981年,科学家将菜豆储存蛋白的基因转移到向日葵中,培育出了“向日葵豆”植株。如果以此作为技术基础,把大豆蛋白的基因转移到水稻、小麦等粮食作物中,就可以提高这些作物的蛋白质含量,改善它们的品质。其次,是用基因工程的方法培育出具有各种抗逆性的作物新品种。自然界中细菌的种类是非常多的,在细菌身上几乎可以找到植物所需要的各种抗性,如抗虫、抗病毒、抗除草剂、抗盐碱、抗干旱、抗高温等。如果将这些抗性基因转移到作物体内,将从根本上改变作物的特性。1982年科学家把细菌中的抗卡那霉素基因转移到烟草、向日葵和胡萝卜等作物中,一举获得成功。此后短短的几年中,科学家又培育出了数十种具有抗病毒、抗虫、抗除草剂的作物新品种。如抗虫的烟草、番茄、马铃薯、玉米、大豆、油菜、棉等作物,抗黄瓜花叶病毒、苜蓿花叶病毒的作物,以及抗除草剂的植物等。1993年,中国农业科学院的科学家成功地将苏云金芽孢杆菌中的抗虫基因转入棉植株,培育成了抗棉铃虫的转基因抗虫棉。基因工程在畜牧养殖业上的应用也具有广阔的前景,科学家将某些特定基因与病毒DNA构成重组DNA,然后通过感染或显微注射技术①将重组DNA转移到动物受精卵中(图3-24)。由这种受精卵发育成的动物可以获得人们所需要的各种优良品质,如具有抗病能力、高产仔率、高产奶率和高质量的皮毛等。3.基因工程与环境保护基因工程的方法可以用于环境监测。据报道,用DNA探针可以检测饮用水中病毒的含量。具体的方法是使用一个特定的DNA片段制成探针,与被检测的病毒DNA杂交,从而把病毒检测出来。此方法的特点是快速、灵敏。用传统方法进行检测,一次需要耗费几天或几个星期的时间,精确度也不高。用DNA探针只需要花费一天的时间,并且能够大幅度地提高检测精度,据报道,1t水中有10个病毒也能检测出来。基因工程还可以用于被污染环境的净化。随着石油工业的迅速发展,石油这种含有多种烃类的物质不断地对陆地、海洋造成污染。自然环境中有一类叫做假单孢杆菌的细菌能够分解石油,但是,每一种假单孢杆菌只能分解石油中的某一种成分。1975年,科学家用基因工程的方法,把能分解三种烃类的基因都转移到能分解另一种烃类的假单孢杆菌内,创造出了能同时分解四种烃类的“超级细菌”。用超级细菌分解石油,可以大大提高细菌分解石油的效率。目前,科学家已经用基因工程方法培养出了“吞噬”汞和降解土壤中DDT的细菌,以及能够净化镉污染的植物。还有一些科学家正努力通过基因重组构建新的杀虫剂,以取代生产过程中耗能多,又易造成环境污染的农药,并试图通过基因工程的方法回收和利用工业废物。凡此种种,都是一些可望取得成功和发展前景十分光明的研究课题。我国基因研究进展人类基因项目是国家“863”高科技计划的重要组成部分。在医学上,人类基因与人类的疾病有相关性,一旦弄清某基因与某疾病的具体关系,人们就可以制造出该疾病的基因药物,对人类健康长寿产生巨大影响。据介绍,人类基因样本总数约10万条,现已找到并完成测序的约有8000条。近些年我国对人类基因组研究十分关注,在国家自然科学基金、“863计划”以及地方政府等多渠道的经费资助下,已在北京、上海两地建立了具备先进科研条件的国家级基因研究中心。同时,科技人员紧跟世界新技术的发展,在基因工程研究的关键技术和成果产业化方面均有突破性的进展。我国人类基因组研究已走在世界先进行列,某些基因工程药物也开始进入应用阶段。目前,我国在蛋白基因的突变研究、血液病的基因治疗、食管癌研究、分子进化理论、白血病相关基因的结构研究等项目的基础性研究上,有的成果已处于国际领先水平,有的已形成了自己的技术体系。而乙肝疫苗、重组α型干扰素、重组人红细胞生成素,以及转基因动物的药物生产器等十多个基因工程药物,均已进入了产业化阶段。科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。参考文献1.龙敏南.2010.基因工程.北京:科学出版社2.宋思扬.楼士林.2007.生物学技术概论.北京:科学出版社3.吴乃虎.2003.基因工程原理(下册).北京:科学出版社4.贺淹才.2008.基因工程概论.北京:清华大学出版社
本文标题:基因工程综述
链接地址:https://www.777doc.com/doc-1944019 .html