您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学《2.1数列的概念与简单表示法》教案新人教A版必修5
1课题:2.1.1数列的概念与简单表示法(1)主备人:执教者:【学习目标】1、理解数列的概念;2、认识数列是反映自然规律的基本数学模型;3、初步掌握数列的一种表示方法——通项公式;【学习重点】数列及其有关概念,通项公式及其应用【学习难点】根据一些数列的前几项抽象、归纳数列的通项公式【授课类型】新授课【教具】多媒体电脑、实物投影仪、电子白板。【学习方法】诱思探究法【学习过程】一、复习引入:师课本图2.1-1中的三角形数分别是多少?生1,3,6,10,师图2.1-2中的正方形数呢?生1,4,9,16,25,师像这样按一定次序排列的一列数你能否再举一些?生-1的正整数次幂:-1,1,-1,1,无穷多个数1排成一列数:1,1,1,1,生一些分数排成的一列数:32,154,356,638,9910,二、新课学习:折纸问题师请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试生一般折5、6次就不能折下去了,厚度太高了师你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生随着对折数厚度依次为:2,4,8,16,…,256,…;随着对折数面积依次为21,41,81,161,…,2561生对折8次以后,纸的厚度为原来的256倍,其面积为原来的1/256,再折下去太困难了师说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生均是一列数生还有一定次序师它们的共同特点:都是有一定次序的一列数.[教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列注意:个性设计2(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….同学们能举例说明吗?生例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列递减数列:从第2项起,每一项都不大于它的前一项的数列常数数列:各项相等的数列摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列请同学们观察:课本P33的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列?生这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列[知识拓展]师你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n项?生256是这数列的第8项,我能写出它的第n项,应为an=2n[合作探究]同学们看数列2,4,8,16,…,256,…①中项与项之间的对应关系,项24816↓↓↓↓序号你能从中得到什么启示?生数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的函数an=f(n),当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1),f(2),f(3),…,f(n师说的很好.如果数列{an}的第n项an与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式三、特例示范1.根据下面数列{an}的通项公式,写出前5项:3(1)an=1nn;(2)an=(-1)n·n师由通项公式定义可知,只要将通项公式中n依次取1,2,3,4,5,即可得到数列的前5项2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2)32,154,356,638,9910,…;(3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式[合作探究]师函数与数列的比较(由学生完成此表):函数数列(特殊的函数)定义域R或R的子集N*或它的有限子集{1,2,…,n}解析式y=f(x)an=f(n)图象点的集合一些离散的点的集合师对于函数,我们可以根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式来画出其对应图象,下面同学们练习画数列4,5,6,7,8,9,10…;②1,21,31,41,…③的图象生根据这数列的通项公式画出数列②、③的图象为师数列4,5,6,7,8,9,10,…②的图象与我们学过的什么函数的图象有关?生与我们学过的一次函数y=x+3的图象有关师数列1,21,31,41,…③的图象与我们学过的什么函数的图象有关?生与我们学过的反比例函数xy1的图象有关师这两数列的图象有什么特点?生其特点为:它们都是一群孤立的点生它们都位于y轴的右侧,即特点为:它们都是一群孤立的,都位于y轴的右侧的点四、课堂小结本课时的整个教学过程以学生自主探究为主,教师起引导作用,充分体4现学生的主体作用,体现新课程的理念对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n项求一些简单数列的通项公式六、作业布置:课时作业2.1.1六、课后反思:
本文标题:高中数学《2.1数列的概念与简单表示法》教案新人教A版必修5
链接地址:https://www.777doc.com/doc-1944090 .html