您好,欢迎访问三七文档
专题8:导数(文)经典例题剖析考点一:求导公式。例1.()fx是31()213fxxx的导函数,则(1)f的值是。解析:2'2xxf,所以3211'f答案:3考点二:导数的几何意义。例2.已知函数()yfx的图象在点(1(1))Mf,处的切线方程是122yx,则(1)(1)ff。解析:因为21k,所以211'f,由切线过点(1(1))Mf,,可得点M的纵坐标为25,所以251f,所以31'1ff答案:3例3.曲线32242yxxx在点(13),处的切线方程是。解析:443'2xxy,点(13),处切线的斜率为5443k,所以设切线方程为bxy5,将点(13),带入切线方程可得2b,所以,过曲线上点(13),处的切线方程为:025yx答案:025yx点评:以上两小题均是对导数的几何意义的考查。考点三:导数的几何意义的应用。例4.已知曲线C:xxxy2323,直线kxyl:,且直线l与曲线C相切于点00,yx00x,求直线l的方程及切点坐标。解析:直线过原点,则0000xxyk。由点00,yx在曲线C上,则02030023xxxy,2302000xxxy。又263'2xxy,在00,yx处曲线C的切线斜率为263'0200xxxfk,26323020020xxxx,整理得:03200xx,解得:230x或00x(舍),此时,830y,41k。所以,直线l的方程为xy41,切点坐标是83,23。答案:直线l的方程为xy41,切点坐标是83,23点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。考点四:函数的单调性。例5.已知1323xxaxxf在R上是减函数,求a的取值范围。解析:函数xf的导数为163'2xaxxf。对于Rx都有0'xf时,xf为减函数。由Rxxax01632可得012360aa,解得3a。所以,当3a时,函数xf对Rx为减函数。(1)当3a时,98313133323xxxxxf。由函数3xy在R上的单调性,可知当3a是,函数xf对Rx为减函数。(2)当3a时,函数xf在R上存在增区间。所以,当3a时,函数xf在R上不是单调递减函数。综合(1)(2)(3)可知3a。答案:3a点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。考点五:函数的极值。例6.设函数32()2338fxxaxbxc在1x及2x时取得极值。(1)求a、b的值;(2)若对于任意的[03]x,,都有2()fxc成立,求c的取值范围。解析:(1)2()663fxxaxb,因为函数()fx在1x及2x取得极值,则有(1)0f,(2)0f.即6630241230abab,.,解得3a,4b。(2)由(Ⅰ)可知,32()29128fxxxxc,2()618126(1)(2)fxxxxx。当(01)x,时,()0fx;当(12)x,时,()0fx;当(23)x,时,()0fx。所以,当1x时,()fx取得极大值(1)58fc,又(0)8fc,(3)98fc。则当03x,时,()fx的最大值为(3)98fc。因为对于任意的03x,,有2()fxc恒成立,所以298cc,解得1c或9c,因此c的取值范围为(1)(9),,。答案:(1)3a,4b;(2)(1)(9),,。点评:本题考查利用导数求函数的极值。求可导函数xf的极值步骤:①求导数xf';②求0'xf的根;③将0'xf的根在数轴上标出,得出单调区间,由xf'在各区间上取值的正负可确定并求出函数xf的极值。考点六:函数的最值。例7.已知a为实数,axxxf42。求导数xf';(2)若01'f,求xf在区间2,2上的最大值和最小值。解析:(1)axaxxxf4423,423'2axxxf。(2)04231'af,21a。14343'2xxxxxf令0'xf,即0143xx,解得1x或34x,则xf和xf'在区间2,2上随x的变化情况如下表:x21,2134,1342,342xf'+0—0+xf0增函数极大值减函数极小值增函数0291f,275034f。所以,xf在区间2,2上的最大值为275034f,最小值为291f。答案:(1)423'2axxxf;(2)最大值为275034f,最小值为291f。点评:本题考查可导函数最值的求法。求可导函数xf在区间ba,上的最值,要先求出函数xf在区间ba,上的极值,然后与af和bf进行比较,从而得出函数的最大最小值。考点七:导数的综合性问题。例8.设函数3()fxaxbxc(0)a为奇函数,其图象在点(1,(1))f处的切线与直线670xy垂直,导函数'()fx的最小值为12。(1)求a,b,c的值;(2)求函数()fx的单调递增区间,并求函数()fx在[1,3]上的最大值和最小值。解析:(1)∵()fx为奇函数,∴()()fxfx,即33axbxcaxbxc∴0c,∵2'()3fxaxb的最小值为12,∴12b,又直线670xy的斜率为16,因此,'(1)36fab,∴2a,12b,0c.(2)3()212fxxx。2'()6126(2)(2)fxxxx,列表如下:x(,2)2(2,2)2(2,)'()fx00()fx增函数极大减函数极小增函数所以函数()fx的单调增区间是(,2)和(2,),∵(1)10f,(2)82f,(3)18f,∴()fx在[1,3]上的最大值是(3)18f,最小值是(2)82f。答案:(1)2a,12b,0c;(2)最大值是(3)18f,最小值是(2)82f。点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。
本文标题:高中数学导数练习题
链接地址:https://www.777doc.com/doc-1944837 .html