您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学集合复习教案
【中学数学教案】集合总复习教学目的:1.理解集合的概念,知道常用数集的概念及其记法,会判断一组对象是否构成集合。2.理解元素与集合的“属于”关系,会判断某一个元素属于或不属于某一个集合,了解数集的记法,掌握元素的特征,理解列举法和描述法的意义。3理解子集、真子集概念,会判断和证明两个集合包含关系,理解“⊂≠”、“⊆”的含义。4.会判断简单集合的相等关系:(1)结合集合的图形表示,理解交集与并集的概念;(2)掌握交集和并集的表示法,会求两个集合的交集和并集。5.理解交集与并集的概念,熟练掌握交集和并集的表示法,会求两个集合的交集和并集,掌握集合的交、并的性质。教学重点:1.集合的基本概念及表示方法。2.交集和并集的概念,集合的交、并的性质。3.子集的概念、真子集的概念。教学难点:1.运用集合的两种常用表示方法——列举法与描述法,正确表示。2.元素与子集、属于与包含间区别、描述法给定集合的运算。3.交集和并集的概念、符号之间的区别与联系。4.集合的交、并的性质。教学内容:一、集合的有关概念:1、集合的概念:(1)集合:集合是由一些确定的对象组成的一个整体,简称集。(2)元素:组成集合的每一个对象叫做这个集合的元素。☆二者必居其一或者之间的关系只有两种与集合元素,:AaAaAa。2、常用数集及记法:(1)非负整数集(自然数集):全体非负整数的集合。记作N。(2)正整数集:非负整数集内排除0的集。记作N*或N+。(3)整数集:全体整数的集合。记作Z。(4)有理数集:全体有理数的集合。记作Q。(5)实数集:全体实数的集合。记作R。3.不含任何元素的集合叫空集,记作。☆注意:0和不同,0是一个数,可以作为一个集合的元素,而是一个集合。二、集合的表示方法:列举法,描述法。☆用列举法表示集合时,元素不能重复,不能遗漏,不计顺序;☆用描述法表示集合时,书写格式为:M={代表元素︱元素的特征性质}。三、集合中元素的特性:(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。(2)互异性:集合中的元素没有重复。(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)。四、集合之间的关系:1.子集:(1)定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A是集合B的子集,记作A⊆B(或B⊇A)。这时我们也说集合A包含于集合B,或集合B包含集合A。☆如果集合A的元素中有一个不是集合B的元素,那么A肯定不是B的子集。(2)真子集:为子集的特例,集合A是集合B的真子集必须满足:①A是B的子集;②至少有一个B中的元素不属于A,A≠B。☆A是B的子集有两种情况:①A是B的真子集;②A=B。2.两个集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。用式子表示:如果A⊆B,同时B⊆A,那么A=B。☆A=B是指A和B的的元素完全相同,判断集合A和B相等的方法有两种:①对有限集合,一般利用定义,观察A和B的元素是否完全相同,直接进行判断;②对无限集合,考察A⊆B且B⊆A是否成立。五、集合的运算:1.交集:定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A和B的交集。记作AB(读作“A交B”),即AB={x|xA,且xB}。2.并集:定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A和B的并集。记作:AB(读作“A并B”),即AB={x|xA,或xB}。例1:用描述法表示下列集合:①{1,4,7,10,13}}5,23|{nNnnxx且②{-2,-4,-6,-8,-10}}5,2|{nNnnxx且用列举法表示下列集合①{x∈N|x是15的约数}{1,3,5,15}②{(x,y)|x∈{1,2},y∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}例已知集合=++=,如果∩=,则实数的2A{x|xx10}ARm2m取值范围是[]A.m<4B.m>4C.0<m<4D.0≤m<4分析∵∩=,∴=.所以++=无实数根,由ARAxx12M0m0(m)402≥,Δ=-<,可得0≤m<4.答选D.例3:已知M={y|y=x2+1,x∈R},N={y|y=-x2+1,x∈R}则M∩N是[]A.{0,1}B.{(0,1)}C.{1}分析先考虑相关函数的值域.解∵M={y|y≥1},N={y|y≤1},∴在数轴上易得M∩N={1}.选C.例4:设集合A={x|-5≤x<1},B={x|x≤2},则A∪B=[]A.{x|-5≤x<1}B.{x|-5≤x≤2}C.{x|x<1}D.{x|x≤2}分析画数轴表示,得∪=≤,∪=.注意,也可以得到∪=≠AB{x|x2}ABB(ABABB)。答D。例5下列四个推理:①AaBAa;②BAaBAa;③∪=;④∪=∩=,其中正确的个数ABABBABAABB为[]A.1B.2C.3D.4分析根据交集、并集的定义,①是错误的推理.答选C。例6:集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B=________。分析A∩B即为两条直线x+y=0与x-y=2的交点集合。解由+=,-=得=,=-.xy0xy2x1y1所以A∩B={(1,-1)}.例7:设A={x∈R|f(x)=0},B={x∈R|g(x)=0},0xgxfRxC,RU全集,则[]。A.C=A∪(UR)B.C=A∩(UB)C.C=A∪BD.C=(UA)∩B分析依据分式的意义及交集、补集的概念逐步化归C{xR|f(x)g(x)0}=∈=={x∈R|f(x)=0且g(x)≠0}={x∈R|f(x)=0}∩{x∈R|g(x)≠0}=A∩(UB).答选B.说明:本题把分式的意义与集合相结合.例8集合A含有10个元素,集合B含有8个元素,集合A∩B含有3个元素,则集合A∪B有________个元素.分析一种方法,由集合A∩B含有3个元素知,A,B仅有3个元素相同,根据集合元素的互异性,集合A∪B的元素个数为10+8-3=15.另一种方法,画图1-10观察可得.答填15.例9已知全集U={x|x取不大于30的质数},A,B是U的两个子集,且A∩(UB)={5,13,23},(UA)∩B={11,19,29},(UA)∩(UB)={3,7}求A,B.分析由于涉及的集合个数,信息较多,所以可以通过画图1-11直观地求解.解∵U={2,3,5,7,11,13,17,19,23,29}用图形表示出A∩(UB),(UA)∩B及(UA)∩(UB)得U(A∪B)={3,7},A∩B={2,17},所以A={2,5,13,17,23},B={2,11,17,19,29}.说明:对于比较复杂的集合运算,可借助图形.例10设集合A={x2,2x-1,-4},B={x-5,1-x,9},若A∩B={9},求A∪B.分析欲求A∪B,需根据A∩B={9}列出关于x的方程,求出x,从而确定A、B,但若将A、B中元素为9的情况一起考虑,头绪太多了,因此,宜先考虑集合A,再将所得值代入检验.解由9∈A可得x2=9或2x-1=9,解得x=±3或5.当x=3时,A={9,5,-4},B={-2,-2,9},B中元素违反互异性,故x=3应舍去;当x=-3时,A={9,-7,-4},B={-8,4,9},A∩B={9}满足题意,此时A∪B={-7,-4,-8,4,9}当x=5时,A={25,9,-4},B={0,-4,9},此时A∩B={-4,9},这与A∩B={9}矛盾.故x=5应舍去.从而可得x=-3,且A∪B={-8,-4,4,-7,9}.说明:本题解法中体现了分类讨论思想,这在高中数学中是非常重要的.例11设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若A∩B=B,求a的值.分析由∩=,,而=+==,-,所以ABBBAA{x|x4x0}{04}2需要对A的子集进行分类讨论.解假如≠,则含有的元素.BBA设0∈B,则a2-1=0,a=±1,当a=-1时,B={0}符合题意;当a=1时,B={0,-4}也符合题意.设-4∈B,则a=1或a=7,当a=7时,B={-4,-12}不符合题意.假如=,则+++-=无实数根,此时Δ<得Bx2(a1)xa100a22<-1.综上所述,a的取值范围是a≤-1或a=1.说明:=这种情形容易被忽视.B例12(1998年全国高考题)设集合M={x|-1≤x<2},N={x|x-≤,若∩≠,则的取值范围是k0}MNk[]A.(-∞,2]B.[-1,+∞)C.(-1,+∞)D.[-1,2]分析分别将集合M、N用数轴表示,可知:k≥-1时,M∩N≠.答选B.
本文标题:高中数学集合复习教案
链接地址:https://www.777doc.com/doc-1947198 .html