您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 高中物理必修2第七章万有引力定律与航天
1中学高三物理导学案第七章万有引力定律与航天【课题】§7.2人造卫星宇宙速度【学习目标】1.知道人造星卫运行的规律,了解各种卫星的特点;2.理解三个宇宙速度的物理意义.【知识要点】1.卫星运行速度v、角速度ω、周期T、向心加速度与轨道半径r的关系①由GMm/r2=mv2/r有v=GMr,即v∝1r,故r,v;②由GMm/r2=mω2r有ω=3GMr,即ω∝31r,故r越,ω越;③由GMm/r2=m(4π2/T2)r有T=2π3rGM,即T∝3r,故r越,T越;④由GMm/r2=ma有a=GM/r2,即a∝1/r2,故r越,a越.2.三种宇宙速度:(1)第一宇宙速度(环绕速度):v1=(地球卫星的最大运行速度,也是人造地球卫星所需的最小的发射速度);(2)第二宇宙速度(脱离速度):v2=(卫星挣脱地球束缚所需的最小的发射速度);(3)第三宇宙速度(逃逸速度):v3=(卫星挣脱太阳束缚所需的最小的发射速度).3.地球同步卫星(1)所谓同步卫星,指跟着地球自转(相对于地面静止),与地球做同步匀速转动的卫星.(2)特点:①卫星的周期与地球自转的周期T(或角速度ω)相同,T=24h;②卫星位于地球赤道的正上方,距地球表面的距离h和线速度都是定值;由T2/r3=4π2/GM得r=4.24×104km,则h=3.6×104km;由v=√GM/r得v=3.08km/s.③卫星的轨道平面与地球的赤道平面重合,绕行方向与地球自转方向一致.【典型例题】【例1】(2010·天津理综)探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比()A.轨道半径变小B.向心加速度变小C.线速度变小D.角速度变小【例2】(2010·江苏物理)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在必修22A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示.关于航天飞机的运动,下列说法中正确的有()A.在轨道Ⅱ上经过A点的速度小于经过B点的速度B.在轨道Ⅱ上经过A点的动能小于轨道Ⅰ上经过A点的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A点的加速度小于在轨道Ⅰ上经过A点的加速度【例3】已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期T1,地球的自转周期T2,地球表面的重力加速度g.某同学根据以上条件,提出一种估算地球质量的方法:同步卫星绕地球做圆周运动,由GMmh2=m(2πT2)2h得M=4π2h3GT22.(1)请判断上面的结果是否正确,并说明理由.如不正确,请给出正确的解法和结果;(2)请根据已知条件再提出两种估算地球质量的方法并解得结果.【例4】如图,同步卫星与地心的距离为r,运行速率为v1,向心加速度为a1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球半径为R,则下列比值正确的是()A.a1a2=rRB.a1a2=(Rr)2C.v1v2=rRD.v1v2=Rr【能力训练】1.(2011·广东六校联考)2010年1月17日00时12分,我国成功发射“北斗二号”卫星并定点于地球同步卫星轨道.“北斗二号”卫星与近地表面做匀速圆周运动的卫星对比()A.“北斗二号”卫星的线速度更大B.“北斗二号”卫星的周期更大C.“北斗二号”卫星的角速度更大D.“北斗二号”卫星的向心加速度更大2.(2011·全国新课标理综)我国“嫦娥一号”探月卫星发射后,3先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球.如果按圆形轨道计算,并忽略卫星质量的变化,则在每次变轨完成后与变轨前相比()A.卫星动能增大,引力势能减小B.卫星动能增大,引力势能增大C.卫星动能减小,引力势能减小D.卫星动能减小,引力势能增大3.(2011·北京理综)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的()A.质量可以不同B.轨道半径可以不同C.轨道平面可以不同D.速率可以不同4.(2011·杭州质检)如图所示,从地面上A点发射一枚远程弹道导弹,在引力作用下,沿ACB椭圆轨道飞行击中地面目标B,C为轨道的远地点,距地面高度为h.已知地球半径为R,地球质量为M,引力常量为G.设距地面高度为h的圆轨道上卫星运动周期为T0.下列结论正确的是()A.导弹在C点的速度大于GMR+hB.导弹在C点的加速度等于GMR+h2C.地球球心为导弹椭圆轨道的一个焦点D.导弹从A点运动到B点的时间一定小于T05.关于地球的第一宇宙速度,下列表述正确的是()A.第一宇宙速度又叫环绕速度B.第一宇宙速度又叫脱离速度C.第一宇宙速度跟地球的质量无关D.第一宇宙速度跟地球的半径无关6.(2011·长宁联考)现有两颗绕地球做匀速圆周运动的人造地球卫星A和B,它们的轨道半径分别为rA和rB.如果rA>rB,则()A.卫星A的运动周期比卫星B的运动周期大B.卫星A的线速度比卫星B的线速度大C.卫星A的角速度比卫星B的角速度大D.卫星A的加速度比卫星B的加速度大7.(2012北京高考卷).关于环绕地球卫星的运动,下列说法正确的是()A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C.在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合48.(2012四川卷).今年4月30日,西昌卫星发射中心发射的中圆轨道卫星,其轨道半径为2.8×l07m。它与另一颗同质量的同步轨道卫星(轨道半径为4.2×l07m)相比A.向心力较小B.动能较大C.发射速度都是第一宇宙速度D.角速度较小9.(2012天津卷).一人造地球卫星绕地球做匀速圆周运动,加入该卫星变轨后仍做匀速圆周运动,动能减小为原来的41,不考虑卫星质量的变化,则变轨前后卫星的()A.向心加速度大小之比为4:1B.角速度大小之比为2:1C.周期之比为1:8D.轨道半径之比为1:210.(2012届南京市高三二模).2011年11月3日凌晨,“神舟八号”飞船与“天宫一号”空间站成功对接.对接后,空间站在离地面三百多公里的轨道上绕地球做匀速圆周运动.现已测出其绕地球球心作匀速圆周运动的周期为T,已知地球半径为R、地球表面重力加速度g、万有引力常量为G,则根据以上数据能够计算的物理量是A.地球的平均密度B.空间站所在处的重力加速度大小C.空间站绕行的线速度大小D.空间站所受的万有引力大小11.(2012苏北四市三模).2012年2月25日我国成功地将第十一颗北斗导航卫星送入太空预定轨道—地球静止轨道,使之成为地球同步卫星。关于该卫星下列说法正确的是A.相对于地面静止,离地面高度为在R~4R(R为地球半径)之间的任意值B.运行速度大于7.9km/sC.角速度大于静止在地球赤道上物体的角速度D.向心加速度大于静止在地球赤道上物体的向心加速度12.(2012淮北一模).(10分)在半径R=5000km的某星球表面,宇航员做了如下实验.实验装置如图15甲所示,竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2kg的小球从轨道AB上高H处的某点静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H的大小,可测出相应的F大小,F随H的变化关系如图15乙所示.求:(1)圆轨道的半径.(2)该星球的第一宇宙速度.5例题答案:1.解析A把天体的运动看成圆周运动,其做圆周运动的向心力由万有引力提供,即GMmr2=mv2r=mrω2=m4π2T2r=m(2πf)2r=ma,当周期T变小,轨道半径变小,选项A正确;向心加速度变大,线速度和角速度都变大,选项B、C、D均错误.2.解析ABC航天飞机在轨道Ⅱ上从远地点A向近地点B运动的过程中万有引力做正功,所以A点的速度小于B点的速度,选项A正确;航天飞机在A点减速后才能做向心运动,从圆形轨道Ⅰ进入椭圆轨道Ⅱ,所以轨道Ⅱ上经过A点的动能小于在轨道Ⅰ上经过A点的动能,选项B正确;根据开普勒第三定律,a3T2=k,因为轨道Ⅱ的半长轴小于轨道Ⅰ的半径,所以航天飞机在轨道Ⅱ的运动周期小于轨道Ⅰ的运动周期,选项C正确;根据万有引力定律F=Gm1m2r2知航天飞机在轨道Ⅱ和轨道Ⅰ上A点受到的万有引力相等,由万有引力提供向心力,即GMmr2=ma得,在轨道Ⅱ上经过A点的加速度等于在轨道Ⅰ上经过A点的加速度,选项D错误.3.解析(1)上面结果是错误的.地球的半径R在计算过程中不能忽略.正确的解法和结果:GMmR+h2=m(2πT2)2(R+h)得M=4π2R+h3GT22.(2)方法一:对于月球绕地球做圆周运动,由GMmr2=m(2πT1)2r得M=4π2r3GT21.方法二:在地面重力近似等于万有引力,由GMmR2=mg得M=gR2G.4.【答案】AD【错因剖析】解本题容易犯的错误是,不分青红皂白,由于思维定式,对近地卫星、同步卫星、地球赤道上的物体均由GMmr2=ma=mv2r分析得出结论,错选B.6【正确解答】同步卫星和赤道上随地球自转的物体,圆周运动角速度相同,半径不同.由向心加速度公式知,a1=ω2r,a2=ω2R.所以a1a2=rR.故A正确,B错误.第一宇宙速度是近地卫星的速度,同步卫星和近地卫星遵循卫星圆周运动的规律.由卫星圆周运动线速度公式知v1=GMr,v2=GMR,所以v1v2=Rr.故C错误,D正确.能力训练答案:1.解析B“北斗二号”卫星的轨道半径比近地卫星大,由GMmr2=mv2r=m4π2T2r=mω2r=ma得,v=Gmr,ω=Gmr3,T=4π2r3GM,a=GMr2,所以只有B项正确.2.解析D卫星做圆周运动,万有引力提供向心力,由GMmr2=mr4π2T2=mv2r可得r=3GMT24π2,v=GMr,由以上两式可知周期越大,轨道半径越大,而速度越小,故A、B错误;从低轨向高轨运动过程中,万有引力做负功,引力势能增大,从而可确定C选项错误,D选项正确.3.解析A由GMmr2=m(2πT)2r知m可约去,A正确;由于T=24h,由上式可知r=3GMT24π2为一确定值,B错误;同步卫星与地球保持相对静止,与地球自转方向相同,且圆周运动的圆心与地球球心重合,故只能位于赤道正上方的平面内,C错误;由GMmr2=mv2r可求得v大小恒定,D错误4.解析BCD本题考查万有引力定律、开普勒定律在天文学中的应用.根据牛顿第二定律GMmR+h2=mv2R+h,过C点绕地球做匀速圆周运动的卫星具有的速度v=GMR+h,因为导弹做椭圆运动,所以vGMR+h,A错误;根据万有引力定律GMmR+h2=ma得C点的加速度a=GMR+h2,B正确;导弹在地球引力的作用下做椭圆运动,根据开普勒第一定律,C正确;若导弹沿距地面高度为h的圆轨道上做圆周运动周期为T0,那么沿ACB椭圆轨道飞行的时间肯定小于T0,D正确.5.解析A第一宇宙速度又叫环绕速度,选项A正确,选项B错误;根据定义有GmMR2=mv2R,可知v与地球的质量和半径有关,选项C、D均错误.76.解析A由万有引力提供向心力得GMmr2=mv2r=mω2r=m4π2T2r=ma得,v=GMr,ω=GMr3,T=2πr3GM,a=GMr2,因为rA>rB,则vA<vB,ωA<ωB,TA>TB,aA<aB,故只有选项A正确.7.答案:B8.答案:B9.答案C。解析:根据向心加速度表达式Rmva2知在动能减小时势能增大,地球卫星的轨道半径增大,则向心加速度之比大于4;根据万有引力和牛顿第二定律有22RMmGRvm化简为GMRv2,知在动能减小速度减小则轨道半径增大到原来的4倍;同理有22)2(RMmGRTm化简为2234GMTR,则周期的平方增大到8倍;根据角速度关系式T2,角速度减小为81。10.答案:ABC解析:由GMm/r2=mv2/r=mω2r=m(4π2/T2)r=m(4π
本文标题:高中物理必修2第七章万有引力定律与航天
链接地址:https://www.777doc.com/doc-1949194 .html