您好,欢迎访问三七文档
1/13《电磁感应中的常见模型》学案一、单杆模型1.如图水平放置的光滑平行轨道左端与一电容器C相连,导体棒ab的电阻为R,整个装置处于竖直向上的匀强磁场中,开始时导体棒ab向右做匀速运动;若由于外力作用使棒的速度突然变为零,则下列结论的有(BD)A.此后ab棒将先加速后减速B.ab棒的速度将逐渐增大到某一数值C.电容C带电量将逐渐减小到零D.此后磁场力将对ab棒做正功2.如图两个粗细不同的铜导线,各绕制一单匝矩形线框,线框面积相等,让线框平面与磁感线方向垂直,从磁场外同一高度开始同时下落,则(A)A.两线框同时落地B.粗线框先着地C.细线框先着地D.线框下落过程中损失的机械能相同3.如图所示,在竖直向上磁感强度为B的匀强磁场中,放置着一个宽度为L的金属框架,框架的右端接有电阻R。一根质量为m,电阻忽略不计的金属棒受到外力冲击后,以速度v沿框架向左运动。已知棒与框架间的摩擦系数为μ,在整个运动过程中,通过电阻R的电量为q,求:(设框架足够长)(1)棒运动的最大距离;(2)电阻R上产生的热量。答案:(1)设在整个运动过程中,棒运动的最大距离为S,则Δφ=BLS又因为q=tI=BLS/R,这样便可求出S=qR/BL。(2)在整个运动过程中,金属棒的动能,一部分转化为电能,另一部分克服摩擦力做功,根据能量守恒定律,则有mv2/2=E+μmgS又电能全部转化为R产生的焦耳热即E=Q由以上三式解得:Q=mv2/2-μmgqR/BL。BBCab2/134.如图固定在水平桌面上的金属框cdef处在竖直向下的匀强磁场中,金属棒ab搁在框架上可无摩擦地滑动,此时构成一个边长为L的正方形,棒的电阻为r,其余部分电阻不计,开始时磁感应强度为B⑴若从t=0时刻起,磁感应强度均匀增加,每秒增量为k,同时保持棒静止,求棒中的感应电流,在图上标出感应电流的方向;⑵在上述情况中,始终保持静止,当t=t1s末时需加的垂直于棒的水平拉力为多大?⑶若从t=0时刻起,磁感应强度逐渐减小,当棒以恒定速度v向右做匀速运动时,可使棒中不产生感应电流,则磁感应强度应怎样随时间变化(写出B与t的关系式)?答案:rkL2ba,(B+kt1)rkL3,vtLBL5.如图电容为C的电容器与竖直放置的金属导轨EFGH相连,一起置于垂直纸面向里,磁感应强度为B的匀强磁场中,金属棒ab因受约束被垂直固定于金属导轨上,且金属棒ab的质量为m、电阻为R,金属导轨的宽度为L,现解除约束让金属棒ab从静止开始沿导轨下滑,不计金属棒与金属导轨间的摩擦,求金属棒下落的加速度.答案:222LBCmmg6.如图,电动机用轻绳牵引一根原来静止的长l=1m,质量m=0.1kg的导体棒AB,导体棒的电阻R=1Ω,导体棒与竖直“∏”型金属框架有良好的接触,框架处在图示方向的磁感应强度为B=1T的匀强磁场中,且足够长,已知在电动机牵引导体棒时,电路中的电流表和电压表的读数分别稳定在I=1A和U=10V,电动机自身内阻r=1Ω,不计框架电阻及一切摩擦,取g=10m/s2,求:导体棒到达的稳定速度?答案:4.5m/s二、双杆1.如图所示,两金属杆ab和cd长均为L,电阻均为R,质量分别为M和m。现用两根质量和电阻均可忽略不计且不可伸长的柔软导线将它们连接成闭合回路,并悬挂于水平、光滑、不导电的圆棒两侧。已知两金属杆都处于水平位置,整个装置处在一个与回路平面垂直磁感强度为B的匀强磁场中,求金属杆ab向下做匀速运动时的速度。VABAabCEFGHBdacebfB03/13析与解当金属杆ab以速度v向下做匀速运动时,cd杆也将以速度v向上做匀速运动,两杆同时做切割磁感线运动,回路中产生的感应电动势为E=2BLv。分别以ab杆和cd杆为研究对象进行受力分析,画出受力分析图如图所示,根据力学平衡方程、则:Mg=BIL+TT=mg+BIL又因为I=E/R总=BLv/R,所以V=(M-m)gR/(2B2L2)。或者以系统为对象,由力的平衡求解。2.如图所示,平行导轨MN和PQ相距0.5m,电阻忽略不计。其水平部分粗糙,倾斜部分光滑。且水平部分置于B=0.6T竖直向上的匀强磁场中,倾斜部分处没有磁场。已知导线a和b的质量均为0.2kg,电阻均为0.15Ω,开始时a、b相距足够远,b放置在水平导轨上,现将a从斜轨上高0.05m处由静止开始释放,求:(g=10m/s2)。(1)回路中的最大感应电流是多少?(2)如果导线和导轨间动摩擦因数μ=0.1,当导线b的速度最大时,导线a的加速度是多少?分析与解:(1)当导线a沿倾斜导轨滑下时,根据机械能守恒定律,导线a进入水平导轨时速度最大,即vm12ghm/s。此时,导线a开始做切割磁感线运动,回路中产生的感应电流最大,即Im=Em/R=BLvm/(2r)=1A。(2)经分析可知,当导线b的速度达到最大值时,导线b所受的安培力与摩擦力大小相等,方向相反,即umg=BIL,此时导线a受到的摩擦力和安培力方向都向右,即F=μmg+BIL=2μmg。根据牛顿第二定律,导线a产生的加速度为a=F/m=2g=20m/s2,方向水平向右。三、线框1.在如图所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小为B的匀强磁场,区域I的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚越过GH进入磁场Ⅰ区时,恰好以速度v1做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又恰好以速度v2做匀速直线运动,从ab进入GH到MN与JP的中间位置的过程中,线框的动能变化量大小为△Ek,重力对线框做功大小为W1,安培力对线框做功大小为W2,下列说法中正确的有(CD)abcd4/13A.在下滑过程中,由于重力做正功,所以有v2>v1。B.从ab进入GH到MN与JP的中间位置的过程中,机械能守恒。C.从ab进入GH到MN与JP的中间位置的过程,有(W1+△Ek)机械能转化为电能。D.、从ab进入GH到MN与JP的中间位置的过程中,线框动能的变化量大小为△Ek=W2-W1。2.如图所示,相距为d的两水平直线1L和2L分别是水平向里的匀强磁场的边界,磁场的磁感应强度为B,正方形线框abcd边长为L(Ld)、质量为m。将线框在磁场上方ab边距1L为h处由静止开始释放,当ab边进入磁场时速度为o,cd边刚穿出磁场时速度也为o。从ab边刚进入磁场到cd边刚穿出磁场的整个过程中(B)A.线框一直都有感应电流B.线框一定有减速运动的过程C.线框不可能有匀速运动的过程D.线框产生的总热量为mg(d+h+L)3.(2006年普通高等学校夏季招生考试物理上海卷)如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里.线框向上离开磁场时的速度刚好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场.整个运动过程中始终存在着大小恒定的空气阻力f且线框不发生转动.求:(1)线框在下落阶段匀速进人磁场时的速度v2;(2)线框在上升阶段刚离开磁场时的速度v1;(3)线框在上升阶段通过磁场过程中产生的焦耳热Q.PJGaHNMθdcbΠIBba5/13解:(1)线框在下落阶段匀速进入磁场瞬间mg=f+B2a2v2R①解得v2=(mg-f)RB2a2②(2)线框从离开磁场至上升到最高点的过程(mg+f)h=12mv12③线框从最高点回落至磁场瞬间(mg-f)h=12mv22④③、④式联立解得v1=mg+fmg-fv2⑤=(mg)2–f2RB2a2⑥(3)线框在向上通过通过过程中12mv02-12mv12=Q+(mg+f)(a+b)⑦v0=2v1Q=32m[(mg)2–f2]RB4a4-(mg+f)(a+b)⑧评分标准:本题共14分。第(1)小题4分,得出①、②式各2分;第(2)小题6分,得出③、④式各2分,正确得出结果⑥式2分,仅得出⑤式1分;第(3)小题4分,得出⑦、⑧式各2分。4.如图所示,倾角为370的光滑绝缘的斜面上放着M=1kg的导轨abcd,ab∥cd。另有一质量m=1kg的金属棒EF平行bc放在导轨上,EF下侧有绝缘的垂直于斜面的立柱P、S、Q挡住EF使之不下滑,以OO′为界,斜面左边有一垂直于斜面向下的匀强磁场。右边有平行于斜面向下的匀强磁场,两磁场的磁感应强度均为B=1T,导轨bc段长L=1m。金属棒EF的电阻R=1.2Ω,其余电阻不计,金属棒与导轨间的动摩擦因数μ=0.4,开始时导轨bc边用细线系在立柱S上,导轨和斜面足够长,当剪断细线后,试求:(1)求导轨abcd运动的最大加速度;(2)求导轨abcd运动的最大速度;(3)若导轨从开始运动到最大速度的过程中,流过金属棒EF的电量q=5C,则在此过程中,系统损失的机械能是多少?(sin370=0.6)解:6/13(1)对导轨进行受力分析有:0sin37MgfFMa安其中22BLvFBILR安1′对棒:)(RvLBmgNff22037cos1′则导轨的加速度:MRvLBRvLBmgMga22220)37sin(sin)1(37cos37sin2200MRvLBgMmg3′可见当v=0时,a最大:1′200/8.237cos37sinsmgMmgam2′(2)当导轨达到最大速度时受力平衡即a=0,此时:1′smLBRmgMgvm/6.5)1()37cos37sin(22003′(3)设导轨下滑距离d时达到最大速度RBLdRtIq,1′d=6m1′对导轨由动能定理得:202137sinMvWMgd损1′损失的机械能W=20.32J5.(07重庆)在t=0时,磁场在xOy平面内的分布如图所示,其磁感应强度的大小均为B0,方向垂直于xOy平面,相邻磁场区域的磁场方向相反。每个同向磁场区域的宽度均为l0。整个磁场以速度沿x轴正方向匀速移动。⑴若在磁场所在区域,xOy平面内放置一由n匝线圈串联而成的矩形导线框abcd,线框的bc边平行于x轴,bc=l0,ab=L,总电阻为R,线框始终保持静止,求①线框中产生的总电动势大小和导线中的电流大小;②线框所受安培力的大小和方向。⑵该运动的磁场可视为沿x轴传播的波,设垂直于纸面向外的磁场方向为正,画出t=0时磁感应强度7/13的波形图,并求波长λ和频率f。【解析】⑴①导线框相对磁场以速度沿x轴负方向匀速移动,依据右手定则知ab、cd边切割磁感线各自产生的感应电流方向相同(均沿顺时针方向),每匝线圈产生的电动势大小为02BL……①因n匝线圈串联,所以总电动势大小为02nBL总……②依据闭合电路欧姆定律得导线中的电流大小为02nBLIRR总……③②依据左手定则知线框ab、cd边电流所受安培力均沿正x方向,ad、bc边在相邻磁场区域内所受安培力方向相反(右面部分向外、左面部分向里),并且上下两边左面部分线框所受安培力大小相等,右面部分线框亦然,故线框所受安培力的合力方向应该沿x轴正方向;依据安培力公式知每匝线圈所受安培力大小为02AFIBL……④n匝线圈所受安培力合力大小AAFnF总……⑤由③~⑤得22204AnBLFR总。⑵将运动的磁场看作沿x轴传播的波时,在指定区域里磁场作周期性振荡,磁感应强度大小不变,方向呈现周期性变化,因此在既定正方向的条件下,t=0时磁感应强度的波形应为图示矩形波。据空间周期性知波长02l,依据f得频率02fl。注:该问题主要考查已有方法的迁移运用能力。6.如图所示,在倾角为θ的光滑的斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L,一个质量为m,边长也为L的正方形线框(设电阻为R)以速度v进入磁场时,恰好做匀速直线运动.若当ab边到达gg′与ff′中间位置时,线框又恰好做匀速运动,则:(1)当ab边刚越过ff′时,线框加速度的值为
本文标题:电磁感应中常见模型
链接地址:https://www.777doc.com/doc-1950417 .html