您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2012年浙江高考理科数学试题及解析
第1页2012年普通高等学校招生全国统一考试(浙江卷)数学(理科)选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<4},B={x|x2-2x-3≤0},则A∩(CRB)=A.(1,4)B.(3,4)C.(1,3)D.(1,2)【解析】A=(1,4),B=(-3,1),则A∩(CRB)=(1,4).【答案】A2.已知i是虚数单位,则3+i1i=A.1-2iB.2-iC.2+iD.1+2i【解析】3+i1i=3+i1+i2=2+4i2=1+2i.【答案】D3.设aR,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0显然平行;若直线l1与直线l2平行,则有:211aa,解之得:a=1ora=﹣2.所以为充分不必要条件.【答案】A4.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是第2页【解析】把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y1=cosx+1,向左平移1个单位长度得:y2=cos(x—1)+1,再向下平移1个单位长度得:y3=cos(x—1).令x=0,得:y3>0;x=12,得:y3=0;观察即得答案.【答案】B5.设a,b是两个非零向量.A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得a=λbD.若存在实数λ,使得a=λb,则|a+b|=|a|-|b|【解析】利用排除法可得选项C是正确的,∵|a+b|=|a|-|b|,则a,b共线,即存在实数λ,使得a=λb.如选项A:|a+b|=|a|-|b|时,a,b可为异向的共线向量;选项B:若a⊥b,由正方形得|a+b|=|a|-|b|不成立;选项D:若存在实数λ,使得a=λb,a,b可为同向的共线向量,此时显然|a+b|=|a|-|b|不成立.【答案】C6.若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种B.63种C.65种D.66种【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有:4个都是偶数:1种;第3页2个偶数,2个奇数:225460CC种;4个都是奇数:455C种.∴不同的取法共有66种.【答案】D7.设Sn是公差为d(d≠0)的无穷等差数列{an}的前n项和,则下列命题错误..的是A.若d<0,则数列{Sn}有最大项B.若数列{Sn}有最大项,则d<0C.若数列{Sn}是递增数列,则对任意的nN*,均有Sn>0D.若对任意的nN*,均有Sn>0,则数列{Sn}是递增数列【解析】选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{Sn}是递增数列,但是Sn>0不成立.【答案】C8.如图,F1,F2分别是双曲线C:22221xyab(a,b>0)的左右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是A.233B.62C.2D.3【解析】如图:|OB|=b,|OF1|=c.∴kPQ=bc,kMN=﹣bc.直线PQ为:y=bc(x+c),两条渐近线为:y=bax.由()byxccbyxa=+=,得:Q(acca,bcca);由()byxccbyxa=+=-,得:P(acca,bcca).∴直线MN为:y-bcca=﹣bc(x-acca),令y=0得:xM=322cca.又∵|MF2|=|F1F2|=2c,∴3c=xM=322cca,解之得:2232acea,即e=62.第4页【答案】B9.设a>0,b>0A.若2223abab,则a>bB.若2223abab,则a<bC.若2223abab,则a>bD.若2223abab,则a<b【解析】若2223abab,必有2222abab.构造函数:22xfxx,则2ln220xfx恒成立,故有函数22xfxx在x>0上单调递增,即a>b成立.其余选项用同样方法排除.【答案】A10.已知矩形ABCD,AB=1,BC=2.将ABD沿矩形的对角线BD所在的直线进行翻着,在翻着过程中,A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C是正确的.【答案】C非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm3.【解析】观察三视图知该三棱锥的底面为一直角三角形,右侧面也是一直角三角形.故体积等于11312123.第5页【答案】112.若程序框图如图所示,则该程序运行后输出的值是______________.【解析】T,i关系如下图:T112161241120i23456【答案】112013.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若2232Sa,4432Sa,则q=______________.【解析】将2232Sa,4432Sa两个式子全部转化成用1a,q表示的式子.即111233111113232aaqaqaaqaqaqaq,两式作差得:2321113(1)aqaqaqq,即:2230qq,解之得:312qorq(舍去).【答案】3214.若将函数5fxx表示为250125111fxaaxaxax其中0a,1a,2a,…,5a为实数,则3a=______________.【解析】法一:由等式两边对应项系数相等.即:545543315544310100aCaaaCaCaa.法二:对等式:2550125111fxxaaxaxax两边连续对x求导三次得:2234560624(1)60(1)xaaxax,再运用赋值法,令1x得:3606a,即310a.【答案】10第6页15.在ABC中,M是BC的中点,AM=3,BC=10,则ABAC=______________.【解析】此题最适合的方法是特例法.假设ABC是以AB=AC的等腰三角形,如图,AM=3,BC=10,AB=AC=34.cos∠BAC=3434102923434.ABAC=cos29ABACBAC【答案】2916.定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离.已知曲线C1:y=x2+a到直线l:y=x的距离等于C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=______________.【解析】C2:x2+(y+4)2=2,圆心(0,—4),圆心到直线l:y=x的距离为:0(4)222d,故曲线C2到直线l:y=x的距离为22ddrd.另一方面:曲线C1:y=x2+a,令20yx,得:12x,曲线C1:y=x2+a到直线l:y=x的距离的点为(12,14a),111()72442422aada.【答案】7417.设aR,若x>0时均有[(a-1)x-1](x2-ax-1)≥0,则a=______________.【解析】本题按照一般思路,则可分为一下两种情况:(A)2(1)1010axxax----,无解;(B)2(1)1010axxax----,无解.因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x>0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图)我们知道:函数y1=(a-1)x-1,y2=x2-ax-1都过定点P(0,1).考查函数y1=(a-1)x-1:令y=0,得M(11a,0),还可分析得:a>1;考查函数y2=x2-ax-1:显然过点M(11a,0),代入得:211011aaa,解之第7页得:2a,舍去2a,得答案:2a.【答案】2a三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤.18.(本小题满分14分)在ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=23,sinB=5cosC.(Ⅰ)求tanC的值;(Ⅱ)若a=2,求ABC的面积.【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。(Ⅰ)∵cosA=23>0,∴sinA=251cos3A,又5cosC=sinB=sin(A+C)=sinAcosC+sinCcosA=53cosC+23sinC.整理得:tanC=5.(Ⅱ)由图辅助三角形知:sinC=56又由正弦定理知:sinsinacAC,故3c.(1)对角A运用余弦定理:cosA=222223bcabc.(2)解(1)(2)得:3borb=33(舍去).第8页∴ABC的面积为:S=52.【答案】(Ⅰ)5;(Ⅱ)52.19.(本小题满分14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.(Ⅰ)求X的分布列;(Ⅱ)求X的数学期望E(X).【解析】本题主要考察分布列,数学期望等知识点。(Ⅰ)X的可能取值有:3,4,5,6.35395(3)42CPXC;21543920(4)42CCPXC;12543915(5)42CCPXC;34392(6)42CPXC.故,所求X的分布列为X3456P542201042211554214214221(Ⅱ)所求X的数学期望E(X)为:E(X)=6491()21iiPXi.【答案】(Ⅰ)见解析;(Ⅱ)9121.20.(本小题满分15分)如图,在四棱锥P—ABCD中,底面是边长为23的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=26,M,N分别为PB,PD的中点.(Ⅰ)证明:MN∥平面ABCD;(Ⅱ)过点A作AQ⊥PC,垂足为点Q,求二面角A—MN—Q的平面角的余弦值.【解析】本题主要考察线面平行的证明方法,建系求二面角等知识点。(Ⅰ)如图连接BD.∵M,N分别为PB,PD的中点,∴在PBD中,MN∥BD.第9页又MN平面ABCD,∴MN∥平面ABCD;(Ⅱ)如图建系:A(0,0,0),P(0,0,26),M(32,32,0),N(3,0,0),C(3,3,0).设Q(x,y,z),则(33)(3326)CQxyzCP,,,,,.∵(3326)CQCP,,,∴(333326)Q,,.由0OQCPOQCP,得:13.即:2326(2)33Q,,.对于平面AMN:设其法向量为()nabc,,.∵33(0)=(300)22AMAN,,,,,.则33330012230300aAMnabbANnac.∴31(0)
本文标题:2012年浙江高考理科数学试题及解析
链接地址:https://www.777doc.com/doc-1955995 .html