您好,欢迎访问三七文档
第1章金属和合金的晶体结构1.1金属原子的结构特点:最外层的电子数很少,一般为1~2个,不超过3个。金属键的特点:没有饱和性和方向性结合力:当原子靠近到一定程度时,原子间会产生较强的作用力。结合力=吸引力+排斥力结合能=吸引能+排斥能(课本图1.2)吸引力:正离子与负离子(电子云)间静电引力,长程力排斥力:正离子间,电子间的作用力,短程力固态金属原子趋于规则排列的原因:当大量金属原子结合成固体时,为使固态金属具有最低的能量,以保持其稳定状态,原子间也必须保持一定的平衡距离。1.2晶体:基元在三维空间呈规律性排列。晶体结构:晶体中原子的具体排列情况,也就是晶体中的这些质点在三维空间有规律的周期性的重复排列方式。晶格:将阵点用直线连接起来形成空间格子。晶胞:保持点阵几何特征的基本单元三种典型的金属晶体结构(要会画晶项指数,晶面指数)共带面:平行或相交于同一直线的一组晶面组成一个晶带,这一组晶面叫做共带面晶带轴:同一晶带中所有晶面的交线互相平行,其中通过坐标原点的那条直线。多晶型转变或同素异构转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变。1.3合金:两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。组元:组成合金最基本的独立的物质,通常组元就是组成合金的元素。相:是合金中具有同一聚集状态、相同晶体结构,成分和性能均一,并以界面相互分开的组成部分。固溶体:合金的组元通过溶解形成一种成分及性能均匀的、且结构与组元之一相同的固相,称为固溶体。与固溶体结构相同的组元为溶剂,另一组元为溶质。固溶体的分类:按溶质原子在溶剂晶格中的位置:置换固溶体与间隙固溶体。按溶质原子在固体中的溶解度:分为有限固溶体和无限固溶体。按溶质原子在固溶体内分布规则:分为有序固溶体和无序固溶体固溶强化:在固体溶液中,随着溶质浓度的增加,固溶体的强度、硬度提高,塑性韧性下降。间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,将形成具有简单晶体结构的金属间化合物。间隙化合物:与间隙相相反(比值大于0.59)。1.4点缺陷:⑴空位⑵间隙原子⑶置换原子。线缺陷:线缺陷就是各种类型的位错。它是指晶体中的原子发生了有规律的错排现象。(刃型位错、螺型位错、混合型位错)滑移矢量:表示位错的性质,晶格畸变的大小的物理量(刃型位错的柏氏矢量与其位错线相垂直;螺形位错的柏氏矢量与其位错线平行。)。面缺陷:晶体的面缺陷包括晶体的外表面(表面或自由界面)和内界面两类,其中的内界面又有晶界、亚晶界、小角度晶界、大角度晶界:两相邻晶粒位向差小于或大于10°相界面的结构有三类:共格界面、半共格界面、非共格界面晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。细晶强化:用细化晶粒增加晶界,提高金属强度的方法,提高材料强度,改善塑性和韧性。固溶强化:由于固溶体中存在溶质原子,使合金强度硬度提高而塑性韧性下降的现象。机制:1.在固溶体中溶质与溶剂原子半径差引起的弹性畸变,与位错间产生的弹性交互作用,对在滑移面上运动着的位错有阻碍作用。2.在位错线上偏聚的溶质原子对位错的钉扎作用。弥散强化:第二相粒子借助粉末冶金的方法,加入基体面,而起强化作用;的强化方法。沉淀强化:位错切过第二相粒子时必须作额外的功,消耗足够大能量,从而提高合金强度。影响置换固溶体溶解度的因素有哪些?1、原子尺寸因素:尺寸差越小溶解度越大。2、负电性因素:在形成固溶体的情况下,溶解度随负电性差的减小而增大。3、电子浓度因素:电子浓度越小,越易形成无限固溶体。4、晶体结构因素:晶格类型相同溶解度较大。位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。简述位错与塑性、强度之间的关系。位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。晶体塑性变形的方式有滑移和孪晶,多数都以滑移方式进行。滑移的本质就是位错在滑移面上的运动,大量位错滑移的结果造成了晶体的宏观塑性变形。位错滑移的结果造成了晶体的宏观塑性变形,使材料发生屈服,位错越容易滑移,强度越低,因此增加位错移动的阻力,可以提高材料的强度。溶质原子造成晶格畸变还可以与位错相互作用形成柯氏气团,都增加位错移动的摩擦阻力,使强度提高。晶界、相界可以阻止位错的滑移,提高材料的强度。所以细化晶粒、第二相弥散分布可以提高强度。晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。第2章纯金属的结晶2.1结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。同素异构转变:金属从一种固态过渡为另一种固体晶态的转变过冷度:理论结晶温度与实际结晶温度之差。过冷是结晶的必要条件。(金属不同过冷度也不同,金属纯度越高过冷度越大。过冷度的速度取决于,冷却速度越大过冷度越大实际洁净无度越低,反之)金属结晶:孕育—出现晶核—长大—金属单晶体2.2从液体向固体的转变使自由能下降.液态金属结晶时,结晶过程的推动力是自由能差降低(△F)是自由能增加,阻力是自身放热2.3近程有序:在液体中的微小范围内,存在着紧密接触规则拍了的的原子集团。远程有序:在大范围内原子时无序分布的,在晶体中大范围内却是有序排列的。结构起伏或相起伏:近程有序在金属液体中各处瞬间出现、瞬间消失、此起彼伏、变化不定的现象。能量起伏液态金属绝对纯净,无任何杂质,也不和型壁接触,只是依靠液态金属的能量变化,由晶胚直接生核的过程。液态金属重要特点:存在着相起伏,只有在过冷液体中的相起伏才能成为晶胚。2.4固态晶核两种形核方式:均匀形核(是指完全依靠液态金属中的晶胚形核的过程)非均匀形核(是指晶胚依附于液态金属中的固态杂质表面形核的过程)。晶核半径与△G的关系:当rrk时,晶胚的长大使系统自由能增加,晶胚不能长大。r=rk时,△G最大,这样的晶胚称为临界晶核,rk为临界晶核半径。rrk时,晶胚成为稳定的晶核。临界晶核半径:晶胚刚好可以自发的长大成为稳定地晶核时的半径叫做临界晶核半径均匀形核是在过冷液态金属中,依靠结构起伏形成大于临界晶核的晶胚,同时必须从能量起伏中获得形核功,才能形成稳定的晶核。形核功:半径为临界晶核半径的晶胚继续长大成为稳定晶核所需要做的最小功形核率N受两个矛盾的因素控制,一方面随过冷度增大,rk、减小,有利于形核;另一方面随过冷度增大,原子从液相向晶胚扩散的速率降低,不利于形核。形核率可用下式表示:N=N1N22.5决定晶体长大方式和长大反方式主要原因:晶核界面结构、界面附近的温度分布及潜热的释放和逸散条件。生长线速度:单位时间内晶体长大的线速度。活性质点:满足点阵匹配原理的界面,可对形核起催化作用。变质处理:在浇注前往液态金属中加入形核剂,促进大量非均匀形核来细化晶粒的方法变质剂:能提供结晶核心,或起阻止晶粒长大的作用的物质。晶体长大的机制:二维晶核长大机制、螺形位错长大机制、垂直长大机制。常温下,金属晶粒越细小,则强度硬度越高,塑性韧性也越好细化晶粒的方法:(1)提高过冷度。降低浇铸温度,提高散热导热能力适用于小件。(2)化学变质处理,加入形核剂(孕育剂)。促进非均匀形核,阻碍晶粒长大。(3)振动和搅拌。输入能量提高形核率;使凝固过程中正在长大的晶体破碎,增加核心。相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据可知当过冷度为零时临界晶核半径Rk为无穷大,临界形核功()也为无穷大。临界晶核半径Rk与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。铸锭三个晶区性能特点:1)表层细晶区:组织致密,力学性能好;2)柱状晶区:组织较致密,存在弱面,力学性能有方向性;3)中心等轴晶区:各晶粒枝杈搭接牢固,无弱面,力学性能无方向性。为什么金属结晶时一定要有过冷度,影响过冷度的因素是什么,固态金属融化时是否会出现过热,为什么?答:由热力学可知,在某种条件下,结晶能否发生,取决于固相的自由度是否低于液相的自由度,即?G=GS-GL0;只有当温度低于理论结晶温度Tm时,固态金属的自由能才低于液态金属的自由能,液态金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度。影响过冷度的因素:影响过冷度的因素:1)金属的本性,金属不同,过冷度大小不同;2)金属的纯度,金属的纯度越高,过冷度越大;3)冷却速度,冷却速度越大,过冷度越大。固态金属熔化时会出现过热度。原因:由热力学可知,在某种条件下,熔化能否发生,取决于液相自固态金属熔化时会出现过热度。原因:由度是否低于固相的自由度,即?G=GL-GS0;只有当温度高于理论结晶温度Tm时,液态金属的自由能才低于固态金属的自由能,固态金属才能自发转变为液态金属,因此金属熔化时一定要有过热度。试比较均匀形核和非均匀形核的异同点。相同点:均匀形核与非均匀形核具有相同的临界晶核半径,非均匀形核的临界形核功也等于三分之一.不同点:非均匀形核要克服的位垒比均匀形核的小得多,在相变的形核过程通常都是非均匀形核优先进行。核心总是倾向于以使其总的表面能和应变能最小的方式形成,因而析出物的形状是总应变能和总表面能综合影响的结果。说明晶体成长形状与温度梯度的关系(1)在正的温度梯度下生长的界面形态:光滑界面结晶的晶体,若无其它因素干扰,大多可以成长为以密排晶面为表面的晶体,具有规则的几何外形。粗糙界面结构的晶体,在正的温度梯度下成长时,其界面为平行于熔点等温面的平直界面,与散热方向垂直,从而使之具有平面状的长大形态,可将这种长大方式叫做平面长大方式。(2)在负的温度梯度下生长的界面形态粗糙界面的晶体在负的温度梯度下生长成树枝晶体。主干叫一次晶轴或一次晶枝。其它的叫二次晶或三次晶。对于光滑界面的物质在负的温度梯度下长大时,如果杰克逊因子α不太大时可能生长为树枝晶,如果杰克逊因子α很大时,即使在负的温度梯度下,仍有可能形成规则形状的晶体为了得到发达的柱状晶区应采用什么措施,为了得到发达的等轴晶区应采取什么措施?其基本原理如何?柱状晶区:1)控制铸型的冷却能力,采用导热性好与热容量大的铸型2)提高浇注温度或浇注速度3)提高熔化温度基本原理:1)铸型冷却能力越大,越有利于柱状晶的生长。2)提高浇注温度或浇注速度,使温度梯度增大,有利于柱状晶的生长。3)熔化温度越高,液态金属的过热度越大,非金属夹杂物溶解得越多,非均匀形核数目越少,减少了柱状晶前
本文标题:金属学与热处理
链接地址:https://www.777doc.com/doc-1966886 .html