您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 金属热处理是利用固态金属相变规律
金属热处理是利用固态金属相变规律,采用加热、保温、冷却的方法,改善并控制金属所需组织与性能(物理、化学及力学性能等)的技术。热处理是金属加工工艺中的一项重要基础技术,通常金属材料都是要经过热处理的,而且,只要选材合适,热处理得当,就能金属材料的性能成倍、甚至十几倍的提高,收到事半功倍的效果。热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。热处理对于充分发挥金属材料的性能潜力,提高产品的内在质量,节约材料,减少能耗,延长产品的使用寿命,提高经济效益都具有十分重要的意义。建国以来,我国的热处理技术有了很大的发展。目前我国在热处理的基础理论研究和某些热处理新工艺、新技术研究方面,与工业发达国家的差距不大,但在热处理生产工艺水平和热处理设备方面却存在着较大的差距,还没有完全扭转热处理生产工艺和热处理设备落后、工件氧化脱碳严重、产品质量差、生产效率低、能耗大、成本高、污染严重的局面。为促进我国热处理技术的发展,我们应全面了解热处理技术的现状和水平,掌握其发展趋势,大力发展先进的热处理新技术、新工艺、新材料、新设备,用高新技术改造传统的热处理技术,实现“优质、高效、节能、降耗、无污染、低成本、专业化生产”,力争赶上工业发达国家水平。1、热处理工艺介绍金属热处理是机械制造中的重要过程之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的,所以,它是机械制造中的特殊工艺过程,也是质量管理的重要环节。为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。2、热处理发展史在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在商代,就已经有了经过再结晶退火的金箔饰物。公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。二十世纪以来,金属物理的发展和其他新技术的移植应用,使金属热处理工艺得到更大发展。一个显著的进展是1901~1925年,在工业生产中应用转筒炉进行气体渗碳;30年代出现露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进一步控制炉内气氛碳势的方法;60年代,热处理技术运用了等离子场的作用,发展了离子渗氮、渗碳工艺;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处理方法。3、我国热处理的发展趋势3.1新的加热源在新的加热源中,以高能率热源最为引人注目。高能率热处理在减小工件变形、获得特殊组织性能和表面状态方面具有很大的优越性,可以提高工件表面的耐磨性、耐蚀性,延长其使用寿命。高能率热处理近年来发展很快,是金属材料表面改性技术最活跃的领域之一,其中激光热处理和离子注入表面改性技术在国外已进入生产阶段。我国一汽、二汽、西安内燃机配件厂等单位,都已建立了汽车发动机缸套的激光表面淬火生产线,但由于高能率热处理的设备费用昂贵等原因,目前我国尚未大量应用,但其发展前景广阔,今后将会成为很有前途的热处理工艺。3.2新的加热方式在热处理时实现少无氧化加热,是减少金属氧化损耗、保证工件表面质量的必备条件,而采用真空和可控气氛则是实现少无氧化加热的主要途径。在表面加热方面,感应加热具有加热速度快、工件表面氧化脱碳少、变形小、节能、公害小、生产率高、易实现机械化和自动化等优点,是一种经济节能的表面加热手段,主要用于工件的表面加热淬火。高能率加热具有加热速度快、表面质量好、变形小、能耗低、无污3.1改进原有的淬火介质,采用新型淬火介质淬火介质是实施淬火工艺过程的重要保证,对热处理后工件的质量影响很大。正确选择和合理使用淬火介质,可以减小工件变形,防止开裂,保证达到所要求的组织和性能。在热处理生产中,常用的淬火介质有水、油、盐类等,它们各有优缺点。如用油淬火,虽然对减小工件变形和开裂很有利,但对淬透性较差或尺寸较大的工件淬不硬,且油易老化,对周围环境的污染大,有发生火灾的危险。为此,要对原有淬火介质的性能进行改进,并积极开发应用冷却速度介于水和油之间、并可根据需要调整冷却速度,同时又经济、安全、无污染的新型淬火介质。无机物水溶液淬火剂和有机聚合物淬火剂是新型淬火介质的发展重点,特别是有机聚合物淬火剂的研究和应用尤为引人注目,其优点是无毒、无烟、无臭、无腐蚀、不燃烧、抗老化、使用安全可靠、且冷却性能好、冷却速度可调、适用范围广、工件淬硬均匀、可明显减少淬火变形和开裂倾向。从提高工件质量、改善劳动条件、避免火灾和节能的角度考虑,有机聚合物淬火剂有逐步取代淬火油的趋势,是淬火介质的主要发展方向,尤其是对于水淬开裂、变形大,油淬不硬的工件,采用有机聚合物淬火剂更是成功的选择。目前,世界上应用最多的是聚烷撑乙二醇(PAG类)淬火剂,它具有逆溶性,冷却速度在盐水和冷油之间,适用的淬火钢种范围广,使用寿命长。还有聚丙烯酸盐(ACR类)淬火剂、聚氧化吡咯烷酮(PVP类)淬火剂和聚乙基恶唑啉(PEO类)淬火剂等,也获得一定程度的应用。多年来,我国在淬火介质的研究和应用方面,做了大量的工作,取得了一定的成绩,基本上满足了热处理生产的需要,但与国外的先进水平相比差距很大,并落后于热处理其它技术领域的发展,是热处理行业中的一个薄弱环节,今后应当给予重视和加强。3.2改进老的淬火方法,采用新的淬火方法为了使工件实现理想的冷却,获得最佳的淬火效果,除根据工件所用的材料、技术要求、服役条件等,来合理选用淬火介质外,还需不断改进现有的淬火方法,并采用新的淬火方法。如采用高压气冷淬火法、强烈淬火法、流态床冷却淬火法、水空气混合剂冷却法、沸腾水淬火法、热油淬火法、深冷处理法等,均能改善淬火介质的冷却性能,使工件冷却均匀,获得很好的淬硬效果,有效地减少工件的变形和开裂。3.3新材料与热处理工艺的紧密结合低碳马氏体是低碳低合金钢经强烈淬火急冷后得到的一种显微组织结构,具有优良的综合机械性能以及良好的冷加工性和可焊性。近二十年来,我国开展了低碳马氏体及其应用研究工作,取得了很大的成绩。例如,低碳马氏体的强度比中碳调质钢高1/3以上,且综合性能良好,用来代替某些中碳调质钢(如高强度螺栓等),可使构件重量成倍减轻;低碳马氏体还具有很高的耐磨性能,可用来制造某些要求耐磨性好的零件(如拖拉机履带板等)。总之,低碳马氏体在石油、煤炭、铁道、汽车、拖拉机等部门应用广泛,收到了提高性能、减轻重量、延长使用寿命、简化工艺、节约能源、节约合金元素、降低成本等技术经济效果。贝氏体钢能够空冷自硬,并将冶金热加工工序与产品成型制造工序相连接,具有良好的强韧性配合、生产工序简单、节约能源、污染少、成本低等优点,因而引起广泛的重视。至今国际上空冷贝氏体钢系列有两类:一类是以英国P.B.Pickering为首于50年代发明的MO-B系贝氏体钢,但因钼的价格昂贵而使其发展受到限制;另一类是以我国清华大学方鸿生教授为首于70年代初期发明的MN-B系贝氏体钢,现己发展有低碳、中低碳、中碳、中高碳系列十多个钢种,应用到耐磨钢球、衬板、齿板、冲击锤、刮板、截齿、离心铸管、汽车前轴、连杆、液压支架等,取得了很好的技术效果和显著的经济效益,成为贝氏体钢发展的重要方向。目前我国MN-B系贝氏体钢己达到年产15万吨的规模,在“九五”末期将达到70万吨/年,占到全国特殊钢产量的5%~10%。大连铁道学院戚正风教授等研制成功无莱氏体高速钢,其合金元素与一般高速钢相同,碳含量则降低到钢水凝固时不形成共晶碳化物(莱氏体)、而又能在淬火回火后整体具有足够的强度、韧性与硬度的水平。这种钢加工成刀具后,通过渗碳,使表层得到≥70HRC的高硬度和600℃4次回火后仍能保持67HRC的红硬性,同时得到55HRC高强韧性的心部,可使刀具使用寿命提高几倍。70年代我国与美国、芬兰等国家同时研制成功A-B球铁,并获得了实际应用,由于A-B球铁既具有较高的强度和硬度,又具有良好的塑性和韧性,因而被广泛用于汽车、拖拉机、内燃机的齿轮、连杆、轴类等结构件以及矿山磨球、锤头等耐磨零件。80年代以后,国内外又从A-B球铁化学成分与热处理工艺两个方面深入进行研究。前者通过提高合金成份来得到铸态A-B球铁,以期取消成本高、工效低的等温淬火工艺;后者则努力完善热处理工艺,提高机械化和自动化水平,以提高生产效率。3.4热处理的节能和环保热处理是机械制造业中耗能最多的工艺之一,在工业发达国家,热处理生产成本的25%~40%是能源成本。据统计,我国的热处理设备中,电炉约占90%,装机总容量约为600万KW,热处理的年用电量近90亿KW.H。由于我国的热处理工艺和设备比较落后,能源利用率低,热处理能耗水平为500~1000KW.H/T,比工业发达国家多2~3倍,因此节能的潜力很大。热处理节能的途径主要有:(1)在热处理工艺方面,改进老工艺,推广应用先进的节能新工艺;(2)在热处理设备方面,改造或淘汰耗能高的落后设备,发展新型高效节能的新设备;(3)在生产组织管理方面,合理组织热处理的批量生产,力求集中和连续性生产,不断提高热处理的专业化生产水平。而搞好热处理,努力提高热处理质量,延长工件的使用寿命,则是最大的节能。开发和推广应用非调质钢,是80年代热处理节能技术的一项重大进展。应用非调质钢,不仅能显著节能,而且减少了生产工序,节省了材料消耗,降低了成本,还可避免淬火时带来的变形和开裂,提高了工件的质量和使用寿命。目前,非调质钢多用于取代调质碳素结构钢,今后的发展趋势是用非调质强韧钢来取代调质合金结构钢,进一步扩大非调质钢的应用范围。热处理生产对环境造成的污染很大,包括排出的废气、废水、废液、废渣、粉尘、噪声、电磁辐射等,且随着生产的发展,其危害也日益严重。研究和采用无污染、无公害的热处理技术,并对排放的有害物质进行有效控制和综合治理,是消除热处理污染的主要措施。1989年联合国环境署决定在全世界推行清洁生产技术。所谓清洁生产技术,就是通过对生产过程和产品的综合防治,减少废弃物产生,最大限度地保护自然环境和利用自然资源,即选取清洁的原料,采用清洁的工艺,实现清洁的生产过程,制造出清洁的产品。日本东京金属技术研究所金武典夫博士通过分析引起全球性的温室效应、空气污染、酸雨等对环境造成的影响,提出了一种“节能-高效
本文标题:金属热处理是利用固态金属相变规律
链接地址:https://www.777doc.com/doc-1967454 .html