您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 针铁矿对焦磷酸根的吸附特征及吸附机制
第33卷第3期应用化学Vol.33Iss.32016年3月CHINESEJOURNALOFAPPLIEDCHEMISTRYMar.2016针铁矿对焦磷酸根的吸附特征及吸附机制谢发之a,b圣丹丹a胡婷婷a李海斌a汪雪春a谢志勇a(安徽建筑大学a材料与化学工程学院;b先进建筑材料安徽省重点实验室合肥230022)摘要为深入了解自然水体中焦磷酸盐的迁移转化行为,以表生环境中广泛存在的稳定矿物针铁矿为研究对象,系统研究了其对焦磷酸根的吸附过程,探索了不同实验条件下(pH值、电解质、时间、温度)针铁矿对焦磷酸根吸附的影响。结果表明,溶液pH值从27升至99时,总磷吸附量从00mg/g降低至075mg/g;电解质浓度越低越有利于针铁矿对焦磷酸根的吸附;吸附剂对焦磷酸根的吸附量在最初1h内增长较快,随后渐渐达到吸附平衡;溶液温度的升高对吸附量提高具有增强作用。用动力学和热力学模型对吸附过程进行拟合,发现准二级动力学和Langmuir模型具有更好的适用性。结合材料吸附焦磷酸根前后的表征,推导出针铁矿对焦磷酸根的吸附机制可能是以表面配合和物理吸附为主导。关键词针铁矿;焦磷酸根;吸附;动力学;热力学中图分类号:O647文献标识码:A文章编号:10000518(2016)03034307DOI:10.11944/j.issn.10000518.2016.03.150243磷是导致水体富营养化的限制因子之一,大量磷的存在会促进水中藻类的生长,导致水生生物死亡,引起水体富营养化[12]。磷在废水中一般以正磷酸盐、多聚磷酸盐和有机磷的形态存在,其中正磷酸盐所占比例最大[34]。多聚磷酸盐是一种广泛存在的线性多聚体,大量应用于食品工业和电镀行业中[56],其中以焦磷酸盐和三聚磷酸盐应用最广泛[7]。大量的多聚磷酸盐在自然界中会缓慢的转化为正磷酸盐,从而能一定程度上维持水中正磷酸盐的水平[3]。人体摄入过多的多聚磷酸盐更会促进血液凝结,影响矿物质的吸收,危害身体健康[8],为此欧盟和日本分别对海产品中多聚磷酸盐的含量进行了限定[9]。因此,研究多聚磷酸盐的在水环境中的行为及其矿物表面的吸附具有重要的理论价值和实际意义。当前对吸附正磷酸盐方面的研究较多[1013],而针对多聚磷酸盐的吸附的研究相对较少。对于多聚磷酸盐的去除工艺目前主要有生物和物理化学两种方法[3,14],如A/O工艺、A2/O(厌氧缺氧好氧)工艺、酸化、沉淀和吸附等,这些方法或多或少都存在着各自的不足之处,如不稳定或不安全等。针铁矿(αFeOOH)是一种普遍存在的土壤矿物,是许多矿石、沉积物和土壤中重要组成部分,也是热力学最稳定的铁氧化物之一[1517]。近年来针铁矿已被广泛的研究,尤其是其结构(包括表面结构),对阴离子,有机/有机酸(特别是土壤有机碳)、自然环境中的阳离子的吸附能力和其潜在的环境保护应用[1819]。对针铁矿单独吸附正磷酸盐的研究也已深入到机理方面[1617],但对于针铁矿单独吸附焦磷酸盐的系统研究还未见报道。焦磷酸盐是一种结构最简单的代表性多聚磷酸盐,本文系统开展针铁矿对水溶液中焦磷酸盐的吸附行为研究,考察了不同实验条件下(pH值、电解质、时间、温度)针铁矿对焦磷酸根的吸附性能,通过对吸附焦磷酸根前后针铁矿结构的分析表征,揭示了针铁矿和焦磷酸根之间的相互作用机制,为明确焦磷酸盐的迁移转化规律和防治水体富营养化提供一定的科学依据。1实验部分1.1仪器和试剂WFJ7200型可见光分光光度计(尤尼克(上海)仪器有限公司);Nicolet6700型傅里叶变换红外光收稿,修回,接受国家自然科学基金项目(21107001),2014年安徽省高校优秀青年人才支持计划项目通讯联系人:谢发之,副教授;Tel:055163828063;Fax:055163828059;Email:fzxie@ahjzu.edu.cn;研究方向:环境功能材料与水污染控制应用化学第33卷3443327277谱仪(赛默飞世尔科技有限公司美国);BrukerD8advance型X射线衍射仪(德国布鲁克仪器有限公司);JSM7500F型电镜仪(日本电子有限公司);pHS2C型精密pH计。焦磷酸钠(国药集团化学试剂有限公司);过硫酸钾(国药集团化学试剂有限公司);Fe(NO3)3·9H2O(国药集团化学试剂有限公司),其它试剂均为分析纯。1.2针铁矿的制备针铁矿的制备参照Schwertmann等[20]方法合成。现配25mL浓度为1mol/L的Fe(NO)溶液置于反应瓶中,在搅拌的状态下迅速加入45mL浓度为5mol/L的KOH溶液,此时有无定型的红褐色氢氧化铁生成。随后立即加入430mL去离子水,密封后在70℃恒温箱中陈化60h。反应结束后取出冷却洗涤沉淀物至洗涤液pH值达到7左右,离心分离并置于干燥箱内干燥,70℃下干燥并磨细过1mm筛。1.3pH对吸附焦磷酸根的影响分别称取50mg的针铁矿到数个离心管中,用不同浓度的NaOH和盐酸溶液分别调节焦磷酸钠溶液,焦磷酸钠溶液初始质量浓度均为3mg/L(以[TP(总磷)]计),使得溶液的pH值分别为627、710、803、894、992和1099,离子强度为001mol/LNaNO3,震荡吸附24h,用045μm的滤膜过滤后消解并测定过滤液中总磷含量,用差减法计算相应的吸附量。1.4电解质对吸附焦磷酸根的影响分别称取50mg的针铁矿到数个离心管中,加入总磷质量浓度分别为05、1、3、5、10、20和50mg/L的焦磷酸钠溶液50mL,添加NaNO3使背景溶液浓度分别为01和001mol/L两种离子强度,震荡吸附24h,用045μm的滤膜过滤后消解并测定过滤液中总磷含量,用差减法计算相应的吸附量。1.5吸附动力学分别称取50mg的针铁矿到数个离心管中,分别加入离子强度为001mol/LNaNO3,总磷质量浓度为1、3、5mg/L的焦磷酸钠溶液50mL,在震荡的情况下分别在30min、1h、2h、4h、6h、8h、10h、22h、34h和48h取样过滤,步骤同上,测其吸光度并计算针铁矿的吸附容量。1.6吸附热力学配制总磷初始质量浓度分别为1、3、5、10mg/L的焦磷酸钠溶液,量取50mL于离心管中,并分别加入50mg的针铁矿吸附剂,置放在27815、28315、28815和29315K的环境下24h,取样过滤,测其吸光度并计算吸附量。2结果与讨论2.1pH对吸附焦磷酸根的影响pH值会影响焦磷酸根的分解,但在弱酸性及碱性的条件下可以忽略分解对实验的影响[2122],因此,本实验着重考察了初始pH值在27以上针铁矿对焦磷酸根的影响。由图1可以看出,随着pH值的升高,针铁矿对焦磷酸根的吸附量逐渐降低。当pH值在27~92之间时,吸附量降低的比较缓慢;而当pH值达到99时,吸附量大幅降低了75%。图1中同时给出了吸附后溶液的pH值,可以看出吸附后的pH值相对于初始pH值有所下降。pH值在6~9之间,焦磷酸根在溶液中主要以HPO3-的形态存在,而pH值在9~11之间,焦磷酸根在溶液中主要以PO4-的形态存在[21]。由于针铁矿的零电荷点在85左右[23],pH值升高使得针铁矿表面聚集较多的负电荷,与溶液中带负电荷的的HPO3-和PO4-库仑斥力增加,静电吸附减弱,2727图1pH值对吸附的影响Fig.1InfluenceofpHontheadsorptionInitialtotalphosphateconcentration:3mg/L;solidtoliquidratio:1∶1000(g/mL);temperature:298.15K;pH=7.97同时由于溶液中逐渐增多的OH-会与HPO3-和2第3期谢发之等:针铁矿对焦磷酸根的吸附特征及吸附机制34527-12PO4-产生竞争吸附,从而使得针铁矿对焦磷酸根的吸附量在pH值6~11之间逐渐下降。2.2电解质对吸附焦磷酸根的影响在背景溶液浓度分别是001mol/LNaNO3和01mol/LNaNO3的离子强度下进行了离子强度对焦磷酸根吸附的影响实验。实验结果如图2所示,结果表明,离子强度对针铁矿吸附焦磷酸根有一定的影响,磷浓度较低时影响比较微小,而在磷浓度较高时,表现为低离子强度有利于焦磷酸根的吸附,且随着磷浓度的升高,吸附量逐渐升高。这可能是溶液中的硝酸根与焦磷酸根在活性位点上有竞争作用,硝酸根对焦磷酸根的吸附有抑制作用,从而引起了低离子强度时的吸附量高于高离子强度时的吸附量,同时也可能说明了离子交换机制在针铁矿吸附焦磷酸根的过程中起到了重要的作用[24]。图2电解质对吸附的影响Fig.2InfluenceofelectrolyteontheadsorptionSolidtoliquidratio:1∶1000(g/mL);temperature:29315K;pH=7.97图3时间对吸附的影响Fig.3InfluenceoftimeontheadsorptionSolidtoliquidratio:1∶1000(g/mL);temperature:29315K;pH=972.3吸附动力学吸附时间的影响是吸附剂要考察的重要因素之一,图3描述了针铁矿对不同浓度(1、3、5mg/L)焦磷酸根48h之内的去除情况。结果表明,不同浓度下针铁矿对焦磷酸根的吸附有相同的趋势。针铁矿在前1h内吸附容量增长较快,这是由于在短时间内该吸附剂表面的空位较多,磷酸根离子能迅速占据该空位;随着时间的延长,吸附容量增加并趋于吸附平衡,吸附剂表面空位越来越少,吸附剂与磷酸根离子间的库伦引力减小,阴离子间的库伦斥力增大,从而导致吸附容量增长较慢,然后达到了平衡。所以此实验为保证针铁矿的充分吸附,吸附反应时间定为24h。为了深入探索吸附机制,本文分别用拟一级动力学方程和拟二级动力学方程对实验数据进行拟合,其公式如下[25]:拟一级动力学线性方程式:ln(qe-qt)=lnqe-k1t(1)式中,qe(mg/g)和qt(mg/g)分别为吸附平衡时的吸附量和时间t时的吸附量,而k1(min)是吸附的拟一级速率常数。拟二级线性方程形式:t=1+1t(2)qtk2qeqe式中,k2(g/(mg·min))是平衡的拟二级吸附速率常数。拟合所得参数列于表1中,由表1可看出,拟二级速率方程相关系数R2均大于099,计算所得的平衡吸附量也更接近实验值,这表明针铁矿对焦磷酸根的吸附更适合用拟二级速率方程来描述。而相比之下,拟二级速率方程能更真实的反应吸附过程中的外部传质、内部扩散和表面吸附等全过程[26]。应用化学第33卷346m表1针铁矿对焦磷酸根的吸附动力学拟合参数Table1FittingparametersofkineticmodelsofpyrophosphateadsorbedongoethitePseudoequationPseudoequationρ(TP)/(mg·L-1)2.4吸附热力学较高的温度会加速焦磷酸根的分解,所以本实验分别在27815、28315、28815和29315K温度下进行了针铁矿对焦磷酸根的吸附实验,吸附曲线如图4所示。由图4可以看出,随着温度升高,针铁矿对焦磷酸根的吸附量增大。同时分别对图中数据进行了Freundlich和Langmuir吸附等温线数据拟合,拟合结果列于表2。Langmuir等温线性方程[27]:ρe=1+ρq(3)qebqmqm式中,ρe(mg/L)和qe(mg/g)分别是吸附平衡浓度和平衡吸附量;qm是单层的最大吸附量(mg/g),b(L/mg)是Langmuir吸附常数。Freundlich等温线性方程[28]:lgq=lgK+1lgρ(4)efne图4温度对吸附的影响Fig.4Influenceoftemperatureontheadsorption式中,Kf和n是Freundlich常数,分别表征吸附能力和吸附强度。Solidtoliquidratio:1∶1000(g/mL);pH=7.97由表2所列Freundlich和Langmuir拟合的相关系数可以看出,Langmuir模型(R2>09
本文标题:针铁矿对焦磷酸根的吸附特征及吸附机制
链接地址:https://www.777doc.com/doc-1969273 .html