您好,欢迎访问三七文档
1John-Cook材料本构模型)1)(ln1)((**mnpyTCBA式中,p——等效塑性应变;*——0.10s-1的无量纲塑性比,0*p;*T——相对温度,roommeltroomTTTTT*A——屈服应力,Pa;B——应变硬化系数,Pa;n——应变硬化指数;C——应变率相关系数;m——温度相关系数。表达式的第一项)(nBA表示对于0.1*和0*T(等温状态)时的应力与应变的函数关系;表达式的第二项)ln1(*C和第三项)1(*mT分别表示应变和率温度的影响。表Johnson和Cook给出的值材料硬度(洛氏)密度g/cm3比热J/kg.K熔温KAMPaBMPanCm高导无氧铜F-308.93831356902920.310.0251.09药筒黄铜F-678.5238511891125050.420.0091.68镍200F-798.944617261636480.330.0061.44工业纯铁F-727.8945218111753800.320.0600.55卡彭特电工钢F-837.8945218112903390.400.0550.551006钢F-947.8945218113502750.360.0221.002024-T351铝B-752.778757752654260.340.0151.007039铝B-762.778758773373430.410.0101.004340钢C-307.8347717937925100.260.0141.03S-7钢C-507.75477176315394770.180.0121.00钨合金0.07Ni0.03FeC-4717.0134172315061700.120.0161.00Du-75TiC-4518.64471473107911200.250.0071.00韩永要《弹道学报》第16卷第2期E/GPaA/MPaB/MPaCnmTmelt/KTroom/K93W17.63500.28415061770.0080.121.01450294603钢7.852100.2207921800.0160.121.01520294(断裂破坏时的)应变]1][ln1][[*5*421*3TDDeDDDf其中,D1、D2、D3、D4、D5输入参数,*是压力与有效应力之比,effp/*。当破坏参数fpD达到1时,发生破坏。*HirofumiIyama,KouseiTakahashi,TakeshiHinata,ShigeruItoh.NumericalSimulationofAluminumAlloyFormingUsingUnderwaterShockWave.8thInternationalLS-DYNAUsersConferenceE/GPaA/MPaB/MPaCnmTmelt/KTroom/KA70393373430.010.411.002Steinberg-Guinan材料本构模型定义材料熔化前的剪切模量imiEEfEcieREEhbpVGG300313/10p——压力,V——相对体积,Ec——冷压缩能,Em——熔化能ARR,R——气体常数,A——原子量屈服强度iimiEEfEciyeREEhpVb300313/10如果Em超过Ei,npiy)(10i——初始塑性应变,当0超过m,设置0等于m。材料熔化之后,y和G设置为初始值的一半。$OFHC为高导无氧铜,聚能装药药型罩常用材料*MAT_STEINBERG$MIDR0G0SIGOBETANGAMASIGM28.930.4770.120E-0236.00.4500.000.640E-02$BBPHFATMOGAMOSA2.832.830.377E-030.100E-0263.50.179E+042.021.50$PCSPALLRPFLAGMMNMMXECOEC1-9.003.000.000.000.000.000.000.00$EC2EC3EC4EC5EC6EC7EC8EC90.000.000.000.000.000.000.000.00*EOS_GRUNEISEN$EOSIDCS1S2S3GAMAOAE020.3941.490.000.002.020.4700.00$V01.00M.Katayama,S.Kibe,T.Yamamoto.NumericalandExperimentalStudyontheShapedChargeforSpaceDebrisAssessment.ActaAstronauttcaVol.48,No.5-12,pp.363-372,2001/GPa/GPa/GPa/MPa.K-1maxAluminum27.10.040.484000.271.767-16.692.608e-31.0Copper47.70.120.64360.451.35-17.983.396e-31.0W.H.Lee,J.W.Painter.Materialvoid-openingcomputationusingparticlemethod.InternationalJournalofImpactEngineering22(1999)1-22二阶状态方程0210221021)()(DCCBBBAAP剪切模量G与流体应力Y间的本构关系ExEfERxEEhPbGGm)(exp3003)(103/10ExEgERxEEhPqbeYYmn)(exp3003)(1)1(03/10max0)1(YeYn,)('3)()(0xTRxExEmm,)1()2exp()(0xaxTxTmm31)(20a,TADRdxxPxEx'3)()(00,axaxTAD0)1()exp(300系数tungstenaluminumsteelTungsten-copperalloy二阶状态方程A121.674191.18674664.95783232.4562457A214.933380.7629953.68837264.6163216B010.1958273.44476547.47273614.3432909B112.2632341.545057311.5191480.76214541B29.30515150.964296325.52511386.4410793C00.333884370.433816560.394926130.31988993C10.482488610.548734620.528834120.46744784D07.01.53.62.2019.172.8067.918.983本构关系G01.60.2760.4770.844Ya0.0220.00290.00120.00127.7125.03616000n0.130.10.450.26Ymax0.040.00680.00640.0168b1.3757.9713.14465414.739h-0.0001375-0.0067159-0.000377358-0.0008056q1.01.01.01.0f0.0010.0010.0010.001g0.0010.0010.0010.001R’0.0000086710.0000083260.00011640.00000663Tme45201220.0179017100-a0.270.490.520.92a1.41.71.51.53Mie-Gruneisen状态方程定义压缩材料的压力为22332212020)1(1)1(12)21(1SSSaCp定义膨胀材料的压力为EaCp)(020其中:C为us-up曲线的截距,体积声速S1、S2、S3是us-up曲线斜率的系数,0是Gruneisen常数,1/0,a是0的一阶体积修正。Ccm/usS1S2S30aE出处铜0.3941.492.020.47水0.16471.921-0.0960.00.352.895e-60.1651.920.1(3)Australia0.1491.791.652.895e-6(1)日本0.1482.56-1.9860.22680.502.895e-60.14891.791.65(4)日本0.1481.791.65(5)日本0.14841.790.113.0钨0.3991.241.54铁0.45691.492.170.464340钢0.45781.331.670.43Steel(SS400)0.4581.491.93(5)Aluminum0.53861.3391.97(2)日本POLYRUBBER8.54000E-021.86500E+00(1)HirofumiIyama,KouseiTakahashi,TakeshiHinata,ShigeruItoh.NumericalSimulationofAluminumAlloyFormingUsingUnderwaterShockWave.8thInternationalLS-DYNAUsersConference(2)M.Katayama,S.Kibe,T.Yamamoto.NumericalandExperimentalStudyontheShapedChargeforSpaceDebrisAssessment.ActaAstronauttcaVol.48,No.5-12,pp.363-372,2001(3)JingPingLu,HelenDorsett,DavidL.Kennedy.SimulationofAquariumTestsforPBXW-115(AUST)(4)S.Itoh,H.Hamashima.DeterminationofJWLParametersfromUnderwaterExplosionTest(5)KatsuhikoTakahashi,KenjiMurata,AkioTorii,YukioKato.EnhancementofUnderwaterShockWavebyMetalConfinement4多线性多项式状态方程压力由下式定义ECCCCCCCP)(2654332210其中,1/0,如果0,则设置022C,026C。当设置063210CCCCC,154CC时,就可以用于符合律状态方程的气体,其中为比热系数。EP0)1(C0C1C2C3C4C5C6E0V0空气0.00.00.00.00.40.40.02.5E-65空白材料在仿真计算中,水介质的材料模型可以选用空白材料(NULL),通过此材料来避免计算应力、应变。在LS-DYNA中为材料模型9。空白材料模型必须使用状态方程。6炸药的材料模型在LS-DYNA中,炸药的材料模型一般都选用材料类型8,即MAT_HIGH_EXPLOSIVE_BURN。需要定义的参数有,密度、爆速与C-J爆轰压力等。此种材料类型必须与状态方程一块使用。7JWL状态方程炸药爆轰产物的状态方程常采用JWL方程。此状态方程通常用于描述高能炸药及爆轰产物,其形式为VEeVRBeVRApVRVR))1()1(2121/g.cm-3爆速/ms-1A/GPaB/GpaR1R2E/GJm-3爆压/Gpa文章SEP炸药1.313652.314.301.100.2815.9(1)TNT1.636930373.83.7474.150.90.359.6021(2)371.23.234.150.95
本文标题:材料模型与状态方程
链接地址:https://www.777doc.com/doc-1973761 .html