您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 金堂中学高2016届补习班数学周练
周练(3)1金堂中学高2016届补习班数学周练(3)一.选择题:1.已知集合A={x|x2>1},B={x|log2x>0},则A∩B=()A.{x|x<﹣1}B.{x|>0}C.{x|x>1}D.{x|x<﹣1或x>1}2.如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.﹣6B.C.D.23.在等差数列{an}中,首项a1=0,公差d≠0,若ak=a1+a2+a3+…+a7,则k=()A.22B.23C.24D.254.函数y=的图象可能是()A.B.C.D.5.某程序框图如图所示,该程序运行后输出的x值是()A.3B.4C.6D.86.函数y=cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所表示,A、B分别为最高点与最低点,并且两点间的距离为,则该函数的一条对称轴为()A.B.C.x=1D.x=27.已知正数x,y满足,则的最小值为()A.1B.C.D.8.若α∈(,π),则3cos2α=sin(﹣α),则sin2α的值为()A.B.﹣C.D.﹣9.一个几何体的三视图如图所示,则这个几何体的体积是()A.1B.2C.3D.4周练(3)210.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B.C.D.11.设双曲线=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若(λ,μ∈R),λ•μ=,则双曲线的离心率为()A.B.C.D.12.若直角坐标平面内A、B两点满足:①点A、B都在函数f(x)的图象上;②点A、B关于原点对称,则点对(A,B)是函数f(x)的一个“姊妹点对”.点对(A,B)与(B,A)可看作是同一个“姊妹点对”,已知函数f(x)=,则f(x)的“姊妹点对”有()A.0个B.1个C.2个D.3个二.填空题:13.(理)6)21(xx的展开式中的常数项为__________.(文)若“x2-2x-30”是“xa”的必要不充分条件,则实数a的最大值为________.14.已知三棱锥P﹣ABC的所有棱长都等于1,则三棱锥P﹣ABC的内切球的表面积__________.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于__________.16.已知f(x)=,g(x)=(k∈N*),对任意的c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b),则k的最大值为__________.周练(3)3三、解答题:17.已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=14.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足:+1(n∈N*),求数列{bn}的前n项和.18.(理)在某校运动会中,甲、乙、丙三支足球队进行单循环赛(即每两队比赛一场)共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为;(1)求甲队获第一名且丙队获第二名的概率;(2)设在该次比赛中,甲队得分为ξ,求ξ的分布列和数学期望.(文)第12届全运会于2013年8月31日在辽宁沈阳顺利举行,组委会在沈阳某大学招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm),身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率;(2)若从身高180cm以上(包括180cm)的志愿者中选出男、女各一人,求这2人身高相差5cm以上的概率.周练(3)419.(理)如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为.(文)已知四边形ABCD是矩形,AB=1,BC=3,将△ABC沿着对角线AC折起来得到△AB1C且顶点B1在平面ACD上的射影O恰落在边AD上,如图所示.(1)求证:平面AB1C⊥平面B1CD;(2)求三棱锥B1-ABC的体积VB1-ABC.20.已知椭圆C的焦点在x轴上,左右焦点分别为F1、F2,离心率e=,P为椭圆上任意一点,△PF1F2的周长为6.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点S(4,0)且斜率不为0的直线l与椭圆C交于Q,R两点,点Q关于x轴的对称点为Q1,过点Q1与R的直线交x轴于T点,试问△TRQ的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.周练(3)521.设函数f(x)=x2﹣(a﹣2)x﹣alnx.(1)求函数f(x)的单调区间;(2)若函数有两个零点,求满足条件的最小正整数a的值;(3)(理)若方程f(x)=c有两个不相等的实数根x1,x2,求证:.选修4-1:几何证明选讲(三选一)22.选修4﹣1:几何证明选讲如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2=EF•EC.(1)求证:CE•EB=EF•EP;(2)若CE:BE=3:2,DE=3,EF=2,求PA的长.周练(3)6选修4-4:坐标系与参数方程23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.选修4-5:不等式选讲24.设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.周练(3)7金堂中学高2016届补习班数学周练(3)一.选择题:1.C.2.C.3.A4.B5.D.6.C7.C8.D.9.D.10.A.11.解答:解:双曲线的渐近线为:y=±x,设焦点F(c,0),则A(c,),B(c,﹣),P(c,),因为=λ+μ,所以(c,)=((λ+μ)c,(λ﹣μ)),所以λ+μ=1,λ﹣μ=,解得:λ=,μ=,又由λμ=,得:=,解得:=,所以,e==.故选:A.12.C.二.填空题:13.文(-1)14..15.解答:解:依题意F点的坐标为(,0),设M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,∴|KM|:|MN|=1:,则|KN|:|KM|=2:1,kFN==﹣,kFN=﹣=﹣2∴=2,求得a=4,故答案为:4.16.解答:解:当k=1时,作函数f(x)=,与g(x)=(k∈N+)的图象如下,周练(3)8k=1,对∀c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b)成立,正确;当k=2时,作函数f(x)=,与g(x)=(k∈N+)的图象如下,k=2,对∀c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b)成立,正确;当k=3时,作函数f(x)=,与g(x)=(k∈N+)的图象如下,k=3时,对∀c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b)成立,正确,k=4时,作函数f(x)=,与g(x)=(k∈N+)的图象如下,k=4,不正确,故答案为:3.三、解答题:17.周练(3)9解答:解:(Ⅰ)设等差数列{an}的公差为d,则依题设d>0.由a2+a6=14,可得a4=7.由a3a5=45,得(7﹣d)(7+d)=45,可得d=2.∴a1=7﹣3d=1.可得an=2n﹣1.(Ⅱ)设cn=,则c1+c2+…+cn=an+1,即c1+c2+…+cn=2n,可得c1=2,且c1+c2+…+cn+cn+1=2(n+1).∴cn+1=2,可知cn=2(n∈N*).∴bn=2n+1,∴数列{bn}是首项为4,公比为2的等比数列.∴前n项和Sn==2n+2﹣4.18.解答:解:(1)设甲队获第一且丙队获第二为事件A,则P(A)==(2)ξ可能的取值为0,3,6;则甲两场皆输:P(ξ=0)=(1﹣)(1﹣)=甲两场只胜一场:P(ξ=3)=×(1﹣)+×(1﹣)=甲两场皆胜:P(ξ=6)==∴ξ的分布列为Eξ=0×+3×+6×=18.(1)根据茎叶图知,“高个子”有12人,“非高个子”有18人,用分层抽样的方法,每个人被抽中的概率是530=16,所以抽取的5人中,“高个子”有12×16=2人,“非高个子”有18×16=3人.“高个子”用A,B表示,“非高个子”用a,b,c表示,则从这5人中选2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,至少有一名“高个子”被选中的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),共7种.因此,至少有一人是“高个子”的概率是P=710.周练(3)10(2)由茎叶图知,有5名男志愿者身高在180cm以上(包括180cm),身高分别为181cm,182cm,184cm,187cm,191cm;有2名女志愿者身高为180cm以上(包括180cm),身高分别为180cm,181cm.抽出的2人用身高表示,则有(181,180),(181,181),(182,180),(182,181),(184,180),(184,181),(187,180),(187,181),(191,180),(191,181),共10种情况,身高相差5cm以上的有(187,180),(187,181),(191,180),(191,181),共4种情况,故这2人身高相差5cm以上的概率为410=25.19.解答:(1)证明:∵长方形ABCD中,AB=2,AD=1,M为DC的中点,∴AM=BM=,∴BM⊥AM,∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM∴BM⊥平面ADM∵AD⊂平面ADM∴AD⊥BM;(2)建立如图所示的直角坐标系,设,则平面AMD的一个法向量,,设平面AME的一个法向量为,取y=1,得,所以,因为求得,所以E为BD的中点.19.(1)证明∵B1O⊥平面ABCD,CD⊂平面ABCD,∴B1O⊥CD,又CD⊥AD,AD∩B1O=O,∴CD⊥平面AB1D,又AB1⊂平面AB1D,∴AB1⊥CD,周练(3)11又AB1⊥B1C,且B1C∩CD=C,∴AB1⊥平面B1CD,又AB1⊂平面AB1C,∴平面AB1C⊥平面B1CD.(2)解由于AB1⊥平面B1CD,B1D⊂平面ABCD,所以AB1⊥B1D,在Rt△AB1D中,B1D=AD2-AB21=2,又由B1O·AD=AB1·B1D得B1O=AB1·B1DAD=63,所以VB1-ABC=13S△ABC·B1O=13×12×1×3×63=26.20.解答:解:(Ⅰ)设椭圆的方程为+=1,a>b>0;∵e==①,|PF1|+|PF2|+|F1F2|=2a+2c=6②,a2﹣b2=c2③;解得a=2,b=,∴椭圆C的方程为;…4分(Ⅱ)设直线l的方程为x=my+4,与椭圆的方程联立,得,消去x,得(3m2+4)y2+24my+36=0,∴△=(24m)2﹣4×36(3m2+4)=144(m2﹣4)>0,即m2>4;…6分设Q(x1,y1),R(x2,y2),则Q1(x1,﹣y1),由根与系数的关系,得;∴直线RQ1的方程为y=(x﹣x1)﹣y1,令y=0,得x===,将①②代人上式得x=1;…9分又S△TRQ==|ST|•|y1﹣y2|=周练(3)12=18×=18×=18×≤,当3
本文标题:金堂中学高2016届补习班数学周练
链接地址:https://www.777doc.com/doc-1981346 .html