您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 车辆控制理论的课件.
控制系统的状态空间模型现代控制理论是在引入状态和状态空间概念的基础上发展起来的。在用状态空间法分析系统时,系统的动态特性是用由状态变量构成的一阶微分方程组来描述的。它能反映系统的全部独立变量的变化,从而能同时确定系统的全部内部运动状态,而且还可以方便地处理初始条件。因而,状态空间模型反映了系统动态行为的全部信息,是对系统行为的一种完全描述。状态空间分析法不仅适用于SISO线性定常系统,也适用于非线性系统、时变系统、MIMO系统以及随机系统等。因而,状态空间分析法适用范围广,对各种不同的系统,其数学表达形式简单而且统一。更突出的优点是,它能够方便地利用数字计算机进行运算和求解,甚至直接用计算机进行实时控制,从而显示了它的极大优越性。第一节状态和状态空间模型系统的状态空间模型是建立在状态和状态空间概念的基础上的,因此,对这些基本概念进行严格的定义和相应的讨论,必须准确掌握和深入理解。状态状态变量状态空间状态空间模型1.系统的状态和状态变量动态(亦称动力学)系统的“状态”这个词的字面意思就是指系统过去、现在将来的运动状况。正确理解“状态”的定义与涵义,对掌握状态空间分析方法十分重要。“状态”的定义如下。定义动态系统的状态,是指能够完全描述系统时间域动态行为的一个最小变量组。该变量组的每个变量称为状态变量。该最小变量组中状态变量的个数称为系统的阶数。一、状态空间的基本概念“状态”定义的三要素完全描述。即给定描述状态的变量组在初始时刻(t=t0)的值和初始时刻后(tt0)的输入,则系统在任何瞬时(tt0)的行为,即系统的状态,就可完全且唯一的确定。动态时域行为。最小变量组。即描述系统状态的变量组的各分量是相互独立的。减少变量,描述不全。增加则一定存在线性相关的变量,冗余的变量,毫无必要。若要完全描述n阶系统,则其最小变量组必须由n个变量(即状态变量)所组成,一般记这n个状态变量为x1(t),x2(t),…,xn(t).若以这n个状态变量为分量,构成一个n维变量向量,则称这个向量为状态变量向量,简称为状态向量,并可表示如下:1212[...]...nnxxxxxxx系统内部状态x1,x2,…,xnu1u2ury1y2ym……多输入多输出系统示意图状态变量是描述系统内部动态特性行为的变量。它可以是能直接测量或观测的量,也可以是不能直接测量或观测的量;可以是物理的,甚至可以是非物理的,没有实际物理量与之直接相对应的抽象的数学变量。状态空间状态变量与输出变量的关系状态变量是能够完全描述系统内部动态特性行为的变量。而输出变量是仅仅描述在系统分析和综合(滤波、优化与控制等)时所关心的系统外在表现的动态特性,并非系统的全部动态特性。因此,状态变量比输出变量更能全面反映系统的内在变化规律。可以说输出变量仅仅是状态变量的外部表现,是状态变量的输出空间的投影,一个子集。输出空间空间映射xy2.系统的状态空间若以n个状态变量x1(t),x2(t),…,xn(t)为坐标轴,就可构成一个n维欧氏空间,并称为n维状态空间,记为Rn.状态向量的端点在状态空间中的位置,代表系统在某一时刻的运动状态。x1x2x(t0)x(t1)x(t2)x(t)随着时间的推移,状态不断地变化,tt0各瞬时的状态在状态空间构成一条轨迹,它称为状态轨线。状态轨线如图2-2所示。图2-2二维空间的状态轨线状态变量选取的特点:状态变量的选取具有非唯一性:即可用某一组,也可用另一组数目最少的变量。状态变量个数的选取具有唯一性:要注意的是状态变量虽然具有非唯一性,但不是所有的变量都可以作为状态变量。例如:纯电阻电路就没有状态变量,因为在这类电路的元件上,任意时间的电流、电压仅取决于该时刻的激励,其形成是一个瞬时的作用,元件过去的历史(初始条件)对确定电路中任意元件上的响应是无关的,输入输出之间仅是一般的代数关系,这种系统属于瞬时(无记忆)系统,所以这种系统就不能用状态变量法来分析。因此,选状态变量的条件是:各状态变量间不能用代数方法互求,且其数目对于给定系统是确定的。状态变量的个数一般应为独立一阶储能元件(如电感和电容)的个数+R-LC+-uCiLui二、系统的状态空间模型状态空间模型是应用状态空间分析法对动态系统所建立的一种数学模型,它是应用现代控制理论对系统进行分析和综合的基础。状态空间模型由描述系统的动态特性行为的状态方程和描述系统输出变量与状态变量间的变换关系的输出方程所组成。下面以一个由电容、电感等储能元件组成的二阶RLC电网络系统为例,说明状态空间模型的建立和形式,然后再进行一般的讨论。例某电网络系统的模型如图所示。试建立以电压ui为系统输入,电容器两端的电压uC为输出的状态空间模型。解1.根据系统的内部机理列出各物理量所满足的关系式。对本例,针对RLC网络的回路电压和节点电流关系,列出各电压和电流所满足的方程ddddLLCiCLiRiLuutuiCt+R-LC+-uCiLui例RLC电网络系统2.选择状态变量。状态变量的个数应为独立一阶储能元件的个数。对本例x1(t)=iL,x2(t)=uC3.将状态变量代入各物理量所满足的方程,整理得一规范形式的一阶矩阵微分方程组--状态方程。每个状态变量对应一个一阶微分方程,导数项的系数为1,非导数项列写在方程的右边。对本例,经整理可得如下状态方程1122-/-1/1/1/00ixxRLLLuxxC写成向量与矩阵形式为:212]10[xxxuC122111dd11ddxCtxuLxLxLRtxi4.列写描述输出变量与状态变量之间关系的输出方程。对本例其中5.将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间模型xyuxxCBA]10[0/10/1/1-/-][][21CLBCLLRAuuxxCiyux由上述例子,可总结出状态空间模型的形式为ABCDxxuyxu其中x为n维的状态向量;u为r维的输入向量;y为m维的输出向量;A为nn维的系统矩阵;B为nr维的输入矩阵;C为mn维的输出矩阵;D为mr维的直联矩阵(前馈矩阵,直接转移矩阵)。描述线性系统的主要状态空间模型,切记!对前面引入的状态空间模型的意义,有如下讨论:状态方程描述的是系统动态特性,其决定系统状态变量的动态变化。输出方程描述的是输出与系统内部的状态变量的关系。系统矩阵A表示系统内部各状态变量之间的关联情况,它主要决定系统的动态特性。输入矩阵B又称为控制矩阵,它表示输入对状态变量变化的影响。输出矩阵C反映状态变量与输出间的作用关系。直联矩阵D则表示了输入对输出的直接影响,许多系统不存在这种直联关系,即直联矩阵D=0。上述线性定常连续系统的状态空间模型可推广至非线性系统、时变系统。1.非线性时变系统(,,)(,,)ttxfxuygxu其中f(x,u,t)和g(x,u,t)分别为如下n维和m维关于状态向量x、输入向量u和时间t的非线性向量函数f(x,u,t)=[f1(x,u,t)f2(x,u,t)…fn(x,u,t)]g(x,u,t)=[g1(x,u,t)g2(x,u,t)…gm(x,u,t)]2.非线性系统(,)(,)xfxuygxu其中f(x,u)和g(x,u)分别为n维和m维状态x和输入u的非线性向量函数。这些非线性函数中不显含时间t,即系统的结构和参数不随时间变化而变化。3.线性时变系统()()()()AtBtCtDtxxuyxu其中各矩阵为时间t的函数,随时间变化而变化。4.线性定常系统为简便,常将线性时变系统的状态空间模型简记为(A(t),B(t),C(t),D(t)).类似地,线性定常系统的状态空间模型亦可简记为(A,B,C,D).几种简记符的意义:ABCDxxuyxu(,,):ABABCCxxuyx(,):ABABxxu(,):AACCxxyx三、线性系统状态空间模型的结构图线性系统的状态空间模型可以用结构图的方式表达出来,以形象说明系统输入、输出和状态之间的信息传递关系。在采用模拟或数字计算机仿真时,它是一个强有力的工具。系统结构图主要有三种基本元件:积分器,加法器和比例器,其表示符如图2-4所示。图2-4系统结构图中的三种基本元件x2x1x1+x2∫2xkx(t)xkx()xt(a)积分器(b)加法器(c)比例器例线性时变系统yxB(t)∫A(t)C(t)D(t)u++++x'()()()()AtBtCtDtxxuyxu的结构图如图所示。图多输入多输出线性时变系统的结构图若需要用结构图表示出各状态变量、各输入变量和各输出变量间的信息传递关系,则必须根据实际的状态空间模型,画出各变量间的结构图。图2-6表示的是状态空间模型如下所示的双输入-双输出线性定常系统的结构图。21222112112122211211212122211211212221121121uuddddxxccccyyuubbbbxxaaaaxx双输入双输出线性定常系统结构图第二节控制系统的状态空间模型的建立由机理出发由微分方程出发由传递函数出发由系统结构图出发一、根据系统机理建立状态空间模型建立被控对象的数学模型是进行系统分析和综合的第一步,是控制理论和工程的基础.上一节讨论了由电容和电感两类储能元件以及电阻所构成的电网络系统的状态空间模型的建立,其依据为各电气元件的物理机理及电网络分析方法.这种根据系统的物理机理建立对象的数学模型的方法称为机理建模.机理建模主要根据系统的物料和能量(电压、电流、力和热量等)在储存和传递中的动态平衡关系,以及各环节、元件的各物理量之间的关系,如电感的电压和电流满足的动态关系.建立动态系统数学模型的主要机理/依据有:电网络系统中回路和节点的电压和电流平衡关系,电感和电容等储能元件的电压和电流之间的动态关系.机械动力学系统中的牛顿第二定律,弹性体和阻尼体的力与位移、速度间的关系.对旋转运动,则相应的为转矩、角位移和角速度.化工热力学系统中的热量的传递与储存,化工反应工程系统中参加反应的物料的传递和平衡关系.经济系统中的投入产出方程。双输入-三输出机械位移系统例设机械位移系统如图所示。力F及阻尼器汽缸速度v为两种外作用,给定输出量为质量块的位移x及其速度、加速度。图中m、k、f分别为质量、弹簧刚度、阻尼系数。试求该双输入-三输出系统的动态方程。解据牛顿力学,故有显见为二阶系统,若已知质量块的初始位移及初始速度,该微分方程在输入作用下的解便唯一确定,故选和作为状态变量。设,三个输出量为,可由微分方程导出下列动态方程:其向量-矩阵形式为式中机电系统的状态空间描述图表示某电枢控制的直流电动机,其中Ra和La为电枢回路总电阻和总电感,J为转动惯量,负载为摩擦系数为f的阻尼摩擦.试列写以电枢电压u(t)为输入,轴的角位移(t)为输出的状态空间模型.+-J,ffMLaiaRau图2-10电枢控制的直流电动机原理图解1.设电动机励磁电流不变,铁心工作在非饱和区.按照图所描述的电动机系统,可以写出如下主回路电压方程和轴转动动力学方程其中Ea和M分别为如下电枢电势和转矩Ea=Ced/dt,M=CMia其中Ce和Cm分别为电枢电势常数和转矩常数(含恒定的磁通量).a22ddddddaaaaiuRiLEtMJftt因此,上述主回路电压方程和轴转动运动方程可记为2.选择状态变量.对于
本文标题:车辆控制理论的课件.
链接地址:https://www.777doc.com/doc-1988080 .html