您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 闰土教育四川省成都七中2014-2015学年高一上学期入学数学试卷
盐阜路学习中心YanfuRdLearningCenter我要去看得更远的地方第1页共14页四川省成都七中2014-2015学年高一上学期入学数学试卷一、选择题(共10小题,每小题4分,满分40分)1.下面几组对象可以构成集合的是()A.视力较差的同学B.2013年的中国富豪C.充分接近2的实数的全体D.大于﹣2小于2的所有非负奇数2.一元二次方程2x2﹣6x﹣3=0的两根为x1,x2,则(1+x1)(1+x2)的值为()A.3B.6C.﹣3D.3.在“等边三角形”、平行四边形、圆、正五角星、抛物线“这五个图形中,是中心对称图形但不是轴对称图形的个数是()A.0B.1C.2D.34.分式方程+1=的解是()A.2B.1C.﹣1D.﹣25.下面四个几何体中,左视图是四边形的几何体共有()个.A.0B.1C.2D.36.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=10,CD=6,则sinB的值为()A.0B.C.D.7.不透明的盒子里面装有五个分别标有数字1、2、3、4、5的乒乓球,这些球除数字外,其他完全相同,一位学生随机摸出两个球,两个球的数字之和是偶数的概率是()A.B.C.D.8.若a≠0,b≠,则代数式++的取值共有()A.2个B.3个C.4个D.5个9.如图,点E在正方形ABCD边CD上,四边形DEFG也是正方形,已知AB=a,DE=b(a,b为常数,且a>b>0),则△ACF的面积()盐阜路学习中心YanfuRdLearningCenter我要去看得更远的地方第2页共14页A.只与a的大小有关B.只与b的大小有关C.只与CE的大小有关D.无法确定10.若关于x的方程x2﹣2mx+m+6=0的两实根为x1,x2,y=(x1﹣1)2+(x2﹣1)2的取值范围是()A.y≥B.y≥8C.y≥18D.y>﹣二、填空题(共10小题,每小题4分,满分40分)11.已知函数y=,自变量x的取值范围是.12.已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c﹣b|﹣|a﹣b|的结果是.13.已知a为实数,则代数式的最小值为.14.函数y=x4+2x2﹣1,﹣1≤x≤1的最小值为.15.如图,点P(m,1)是双曲线y=上一点,PT⊥x轴于点T,吧△PTO沿直线OP翻折得到△PT1O,则T1的坐标为.16.满足不等式x(x2+1)>(x+1)(x2﹣x+1)的x的取值范围是.17.已知==,则的值为.18.已知++|x﹣y+2010|+z2+4z+4=0,则x+y+z=.盐阜路学习中心YanfuRdLearningCenter我要去看得更远的地方第3页共14页19.对于正数x,规定,例如f(3)=,f()=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f+f+f=.20.已知关于x的方程x3﹣ax2﹣2ax+a2﹣1=0有且只有一个实根,则实数a的取值范围是.三、解答题(共2小题,满分20分)21.(1)先化简,再求值:已知x=+1,求(﹣)+的值;(2)解不等式≥1.22.在某服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元/件(第一周价格),并且每周价格上涨,如图所示,从第6周开始到第11轴保持30元/件的价格平稳销售;从第12周开始,当季节即将过去时,每周下跌,直到第16周周末,该服装不再销售.(1)求销售价y(元/件)与周次x之间的函数关系式;(2)若这种时装每件进价Z与周次x次之间的关系为Z=﹣0.125(x﹣8)2+12.(1≤x≤16,且x为整数),试问该服装第几周出售时每件销售利润最大?最大利润为多少?四川省成都七中2014-2015学年高一上学期入学数学试卷一、选择题(共10小题,每小题4分,满分40分)1.下面几组对象可以构成集合的是()A.视力较差的同学B.2013年的中国富豪C.充分接近2的实数的全体盐阜路学习中心YanfuRdLearningCenter我要去看得更远的地方第4页共14页D.大于﹣2小于2的所有非负奇数考点:集合的含义.专题:规律型;集合.分析:根据集合元素所具有的性质逐项判断即可.解答:解:集合的元素具有“确定性”、“互异性”、“无序性”,选项A、B、C均不满足“确定性”,故排除A、B、C,故选D.点评:本题考查集合的定义、集合元素的性质,属基础题,理解相关概念是解决问题的关键.2.一元二次方程2x2﹣6x﹣3=0的两根为x1,x2,则(1+x1)(1+x2)的值为()A.3B.6C.﹣3D.考点:根与系数的关系.专题:函数的性质及应用.分析:根据一元二次方程的根与系数的关系x1+x2=3,x1•x2=,然后将其代入所求的代数式(1+x1)(1+x2)求值即可.解答:解:∵方程2x2﹣6x﹣3=0的两根为x1,x2,∴x1+x2=3,x1•x2=,∴(1+x1)(1+x2)=x1•x2+x1+x2+1=+3+1=,故选:D点评:本题考查了一元二次方程的根与系数的关系.解题时,务必弄清楚根与系数的关系x1+x2=﹣,x1•x2=中的a、b、c所表示的意义.3.在“等边三角形”、平行四边形、圆、正五角星、抛物线“这五个图形中,是中心对称图形但不是轴对称图形的个数是()A.0B.1C.2D.3考点:图形的对称性.专题:常规题型;立体几何.分析:依次判断五个图形是轴对称还是中心对称即可.解答:解:“等边三角形”是轴对称图形,平行四边形是中心对称图形但也可能是轴对称图形,圆是轴对称图形也是中心对称图形,正五角星轴对称图形,抛物线轴对称图形,故选A.点评:本题考查了图形的对称性,轴对称是关于线对称,中心对称是关于点对称,属于基础题.盐阜路学习中心YanfuRdLearningCenter我要去看得更远的地方第5页共14页4.分式方程+1=的解是()A.2B.1C.﹣1D.﹣2考点:函数的值.专题:函数的性质及应用.分析:由已知得==﹣1,由此能求出分式方程+1=的解.解答:解:∵+1=,∴==﹣1,∴x=2﹣x,解得x=1.故选:B.点评:本题考查分式方程的解法,解题时要认真审题,注意分式方程性质的合理运用.5.下面四个几何体中,左视图是四边形的几何体共有()个.A.0B.1C.2D.3考点:简单空间图形的三视图.专题:计算题;空间位置关系与距离.分析:四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.解答:解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体,故选C.点评:本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.6.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=10,CD=6,则sinB的值为()A.0B.C.D.考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件利用勾股定理求得AD的值,再利用直角三角形中的边角关系求得tanA的值,可得BC的值,再利用直角三角形中的边角关系求得sinB的值.解答:解:在Rt△ABC中,∵∠ACB=90°,CD⊥AB于D,AC=10,CD=6,∴AD==8∴tanA===.盐阜路学习中心YanfuRdLearningCenter我要去看得更远的地方第6页共14页再根据tanA===,∴BC=,∴sinB===,故选:D.点评:本题主要考查直角三角形中的边角关系,勾股定理,属于基础题.7.不透明的盒子里面装有五个分别标有数字1、2、3、4、5的乒乓球,这些球除数字外,其他完全相同,一位学生随机摸出两个球,两个球的数字之和是偶数的概率是()A.B.C.D.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:列举出所有情况,看两球上的数字之和是偶数的情况占总情况的多少即可,解答:解:一位学生随机摸出两个球,所有情况为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种,两个球的数字之和是偶数的有(1,3,),(1,5),(2,4),(3,5)共4种,故两个球上的数字之和是偶数的概率是=,故选:B点评:本题主要考查了古典概型的概率问题,关键是不重不漏列举出所有的基本事件,属于基础题.8.若a≠0,b≠,则代数式++的取值共有()A.2个B.3个C.4个D.5个考点:进行简单的演绎推理.专题:函数的性质及应用.分析:记m=++.分类讨论:当a>0,b>0时,当a<0,b<0时,当a>0,b<0时,或当a<0,b>0时.即可得出.解答:解:记m=++.当a>0,b>0时,m==3;当a<0,b<0时,m=﹣1;当a>0,b<0时,或当a<0,b>0时,m=1﹣1+1=﹣1.盐阜路学习中心YanfuRdLearningCenter我要去看得更远的地方第7页共14页综上可得:代数式++的取值共有2个.故选:A.点评:本题考查了分类讨论的思想方法求代数式的值,属于基础题.9.如图,点E在正方形ABCD边CD上,四边形DEFG也是正方形,已知AB=a,DE=b(a,b为常数,且a>b>0),则△ACF的面积()A.只与a的大小有关B.只与b的大小有关C.只与CE的大小有关D.无法确定考点:三角形的面积公式.专题:立体几何.分析:如图所示,利用S△ACF=S△ACD+S梯形ADGF﹣S△AFG即可得出.解答:解:如图所示,S△ACF=S△ACD+S梯形ADGF﹣S△AFG=+﹣=.因此△ACF的面积只与a有关系.故选:A.点评:本题考查了三角形与梯形、正方形的面积计算公式,属于基础题.10.若关于x的方程x2﹣2mx+m+6=0的两实根为x1,x2,y=(x1﹣1)2+(x2﹣1)2的取值范围是()A.y≥B.y≥8C.y≥18D.y>﹣考点:根与系数的关系.专题:函数的性质及应用.分析:由方程x2﹣2mx+m+6=0的两实根为x1,x2,可得:△≥0,即m≤﹣2,或m≥3,且x1+x2=2m,x1•x2=m+6,进而可将y=(x1﹣1)2+(x2﹣1)2化为:y=4m2﹣6m﹣10(m≤﹣2,或m≥3)的形式,结合二次函数的图象和性质可得答案.解答:解:∵方程x2﹣2mx+m+6=0的两实根为x1,x2,∴△=4m2﹣4(m+6)≥0,即m≤﹣2,或m≥3,且x1+x2=2m,x1•x2=m+6,则y=(x1﹣1)2+(x2﹣1)2=(x1+x2)2﹣2x1•x2﹣2(x1+x2)+2=4m2﹣2(m+6)﹣4m+2=4m2﹣6m﹣10,故当m=3时,y取最小值8,无最大值,即y=(x1﹣1)2+(x2﹣1)2的取值范围是y≥8,故选:B盐阜路学习中心YanfuRdLearningCenter我要去看得更远的地方第8页共14页点评:本题考查的知识点是一元二次方程根与系数的关系,二次函数的图象和性质,难度中档.二、填空题(共10小题,每小题4分,满分40分)11.已知函数y=,自变量x的取值范围是{x|x≥1且x≠2}.考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数成立的条件,即可得到结论.解答:解:要使函数f(x)有意义,则,解得x≥1且x≠2,故答案为:{x|x≥1且x≠2}点评:本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.12.已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c﹣b|﹣|a﹣b|的结果是0.考点:进行简单的演绎推理.专题:函数的性质及应用.分析:由于关于x的方程|5x﹣4|+a=0无解,可得a>0.方程|4x﹣3|+b=0变为|4x﹣3|=﹣b,根据|4x﹣3|+b=0有两个解,可得﹣b>0.方程|3x﹣2|+c=0变为|3x﹣2|=﹣c,由于只有一个解,可得﹣c=0.解答:解:由于关于x的方程|5x﹣4|+
本文标题:闰土教育四川省成都七中2014-2015学年高一上学期入学数学试卷
链接地址:https://www.777doc.com/doc-1997221 .html