您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高一数学函数单调性考点解析及习题辅导
地址中山北路28号江苏商厦7楼咨询电话:025-86997559第二章函数——函数的单调性高考要求新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆了解函数单调性的概念,掌握判断一些简单函数的单调性的方法。会用函数单调性解决一些问题.知识点归纳新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.1.函数单调性的定义:2.证明函数单调性的一般方法:①定义法:设2121,xxAxx且;作差)()(21xfxf(一般结果要分解为若干个因式的乘积,且每一个因式的正或负号能清楚地判断出);判断正负号。②用导数证明:若)(xf在某个区间A内有导数,则()0fx’,)xA()(xf在A内为增函数;)0)(Axxf,(’)(xf在A内为减函数。3.求单调区间的方法:定义法、导数法、图象法。4.复合函数)(xgfy在公共定义域上的单调性:①若f与g的单调性相同,则)(xgf为增函数;地址中山北路28号江苏商厦7楼咨询电话:025-86997559②若f与g的单调性相反,则)(xgf为减函数。注意:先求定义域,单调区间是定义域的子集。5.一些有用的结论:①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反;③在公共定义域内:增函数)(xf增函数)(xg是增函数;减函数)(xf减函数)(xg是减函数;增函数)(xf减函数)(xg是增函数;减函数)(xf增函数)(xg是减函数。④函数)0,0(baxbaxy在,,bbaa或上单调递增;在,00bbaa或,上是单调递减。题型讲解新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆例1若y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)分析:本题存在多种解法,但不管哪种方法,都必须保证:①使loga(2-ax)有意义,即a>0且a≠1,2-ax>0.②使loga(2-ax)在[0,1]上是x的减函数.由于所给函数可分解为y=logau,u=2-ax,其中u=2-ax在a>0时为减函数,所以必须a>1;③[0,1]必须是y=loga(2-ax)定义地址中山北路28号江苏商厦7楼咨询电话:025-86997559域的子集.解法一:因为f(x)在[0,1]上是x的减函数,所以f(0)>f(1),即loga2>loga(2-a).解法二:由对数概念显然有a>0且a≠1,因此u=2-ax在[0,1]上是减函数,y=logau应为增函数,得a>1,排除A,C,再令a=3,则3log(23)yx的定义域为2(,)3,但[0,1]不是该区间的子集。故排除D,选B.说明:本题为1995年全国高考试题,综合了多个知识点,无论是用直接法,还是用排除法都需要概念清楚,推理正确.例2(1)求函数20.7log(32)yxx的单调区间;(2)已知2()82,fxxx若2()(2)gxfx试确定()gx的单调区间和单调性.解:(1)单调增区间为:(2,),单调减区间为(,1),(2)222()82(2)(2)gxxx4228xx,3()44gxxx,令()0gx,得1x或01x,令()0gx,1x或10x∴单调增区间为(,1),(0,1);单调减区间为(1,),(1,0).例3设0a,()xxeafxae是R上的偶函数.地址中山北路28号江苏商厦7楼咨询电话:025-86997559(1)求a的值;(2)证明()fx在(0,)上为增函数.解:(1)依题意,对一切xR,有()()fxfx,即1xxxxeaaeaeae∴11()()xxaeae0对一切xR成立,则10aa,∴1a,∵0a,∴1a.(2)(定义法)设120xx,则12121211()()xxxxfxfxeeee2121121122111()(1)(1)xxxxxxxxxxxeeeeeee,由12210,0,0xxxx,得21120,10xxxxe,2110xxe,∴12()()0fxfx,即12()()fxfx,∴()fx在(0,)上为增函数.(导数法)∵1a,(0,)x∴211()1()()0xxxxxxefxeeeee∴()fx在(0,)上为增函数.例4函数9()log(8)afxxx在[1,)上是增函数,求a的取值范围.分析:由函数9()log(8)afxxx在[1,)上是增函数可以得到两个信息:①对任意的121,xx总有12()()fxfx;②当1x时,80axx恒成立.解:∵函数9()log(8)afxxx在[1,)上是增函数,地址中山北路28号江苏商厦7楼咨询电话:025-86997559∴对任意的121,xx有12()()fxfx,即919212log(8)log(8)aaxxxx,得121288aaxxxx,即1212()(1)0axxxx,∵120xx,∴1210,axx121,axx12axx,∵211xx,∴要使12axx恒成立,只要1a;又∵函数9()log(8)afxxx在[1,)上是增函数,∴180a,即9a,综上a的取值范围为[1,9).另解:(用导数求解)令()8agxxx,函数9()log(8)afxxx在[1,)上是增函数,∴()8agxxx在[1,)上是增函数,2()1agxx,∴180a,且210ax在[1,)上恒成立,得19a.学生练习新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆1.判断函数f(x)=ax/(x21)(a≠0)在区间(1,1)上的单调性。2.已知函数f(x)=a(axax)/(a2)(a0,且a≠1)是R上的增函数,求a的取值范围。3.设函数f(x)=axx12(a0),求a的取值范围,使函数f(x)在区间[0,+)上是单调函数。4.函数y=322xx的递减区间是5.求y=log0.7(x23x+2)的单调区间及单调性地址中山北路28号江苏商厦7楼咨询电话:025-869975596.求y=8+2log0.5xlog0.52x的单调区间及单调性.7.函数y=lncos(x/3+/4)的递减区间是8.函数y=loga(2ax)在[0,1]上是减函数,则a的取值范围是9.已知奇函数f(x)在定义域[2,2]上递减,求满足f(1m)+f(1m2)0的实数m的取值范围。10.已知a0,a≠1,有f(logax)=xaxa)1()1(22(1)求f(x)的表达式,并证明f(x)在(,+)上是增函数;(2)求证:对于任意大于1的自然数n,f(n)n成立。11.写出函数f(x)=log0.5|x2x12|的单调区间12.比较下面三个数的大小:4316.0,2316.0,235.013.设奇函数f(x)在[0,+)上是增函数,若对于任意实数x,不等式f(kx)+f(xx22)0恒成立,求实数k的取值范围。14.已知q0,且q≠1,数列{an}是首项和公比都为q的等比数列,设bn=anlog5an(nN),(1)当q=5时,求数列{bn}的前n项和Sn;(2)在(1)的条件下,求nnnnaSlim;(3)在数列{bn}中,对于任意自然数n,当mn时,都有bmbn,求q的取值范围。参考答案:1.a0,f(x)递减;a0,f(x)递增地址中山北路28号江苏商厦7楼咨询电话:025-869975592.a(0,1)(2,+)3.a1时,f(x)递减;0a1时,存在两点x1=0,x2=2a/(1a2),f(x1)=f(x2)=1,故无单调性。4.((,3)])5.在(,1)上递增;在(2,+)上递减6.在(0,1/2]上递增;在[1/2,+)上递减7.[6k3/4,6k+3/4]kZ8.(1,2)9.1m110.(1)f(x)=a(axax)/(a21);(2)用数学归纳法:f(n)nf(n)+1n+1,证明f(n+1)f(n)+1n+111.作图,在(3,1/2]和(4,+)上递减,在(,3)和[1/2,4)上递增。)12.4316.02316.0235.013.221k22114.(1)Sn=)55(1614511nnn;(2)5/4;(3)q1或q1/2
本文标题:高一数学函数单调性考点解析及习题辅导
链接地址:https://www.777doc.com/doc-2000605 .html