您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高一数学必修3概率部分知识点总结及习题训练学生版
1图2/*概率例题选讲:例1.在大小相同的6个球中,4个是红球,若从中任意选2个,求所选的2个球至少有一个是红球的概率?变式训练1:在大小相同的6个球中,2个是红球,4个是白球,若从中任意选取3个,求至少有1个是红球的概率?变式训练2:盒中有6只灯泡,其中2只次品,4只正品,有放回的从中任抽2次,每次抽取1只,试求下列事件的概率:(1)第1次抽到的是次品(2)抽到的2次中,正品、次品各一次变式训练3:甲乙两人参加一次考试共有3道选择题,3道填空题,每人抽一道题,抽到后不放回,求(1)甲抽到选择题而乙抽到填空题的概率?(2)求至少1人抽到选择题的概率?例2.将一颗骰子向上抛掷两次,所得点数分别为a和b,则函数221yxabx在5,7上不是单调函数的概率是()A.14B.16C.536D.12变式训练1:设关于x的一元二次方程022baxx,若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.变式训练2:有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两个同学参加同一个兴趣小组的概率为()A.13B.12C.23D.34变式训练3:将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)两数中至少有一个奇数的概率;(3)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15内部的概率.变式训练4.袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求:(1)3个全是红球的概率.(2)3个颜色全相同的概率.(3)3个颜色不全相同的概率.(4)3个颜色全不相同的概率.例2.如图,分别以正方形ABCD的四条边为直径画半圆,重叠部分如图中阴影区域,若向该正方形内随机投一点,则该点落在阴影区域的概率为()2BDCPAA.42B.44C.22D.24变式训练1:在地上画一正方形线框,其边长等于一枚硬币的直径的2倍,向方框中投掷硬币硬币完全落在正方形外的不计,求硬币完全落在正方形内的概率?变式训练2:如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是A.21πB.112πC.2πD.1π变式训练3:如图,已知矩形在正方形内,中,7AC,5ABABCD,P任取一点的概率?例3:甲乙两人约定在6时到7时在某地会面,并约定先到者等候另一人一刻钟,过时即可离去,求两人能会面的概率?90APB3课堂练习:一、选择题1.任取两个不同的1位正整数,它们的和是8的概率是().A.241B.61C.83D.1212.在区间2π2π,-上随机取一个数x,cosx的值介于0到21之间的概率为().A.31B.π2C.21D.323.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为().A.103B.107C.53D.524.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是().A.103B.51C.101D.1215.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为().A.12513B.12516C.12518D.125196.若在圆(x-2)2+(y+1)2=16内任取一点P,则点P落在单位圆x2+y2=1内的概率为().A.21B.31C.41D.1617.已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是().A.51B.52C.53D.548.在正方体ABCD-A1B1C1D1中随机取点,则点落在四棱锥O-ABCD(O为正方体体对角线的交点)内的概率是().A.61B.31C.21D.329.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=61,则“出现1点或2点”的概率为().A.21B.31C.61D.12110.某人午觉醒来,发觉表停了,他打开收音机想听电台报时,假定电台每小时报时一次,则他等待的时间短于10分钟的概率为___________.11.有A,B,C三台机床,一个工人一分钟内可照看其中任意两台,在一分钟内A未被照看的概率是.412.抛掷一枚均匀的骰子(每面分别有1~6点),设事件A为“出现1点”,事件B为“出现2点”,则“出现的点数大于2”的概率为.13.已知函数f(x)=log2x,x∈221,,在区间221,上任取一点x0,使f(x0)≥0的概率为.14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.15.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b.则a+b能被3整除的概率为.16.射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中环数小于8环的概率.17.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.18.同时抛掷两枚相同的骰子(每个面上分别刻有1~6个点数,抛掷后,以向上一面的点数为准),试计算出现两个点数之和为6点、7点、8点的概率分别是多少?19.从含有两件正品a1,a2和一件次品b的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.
本文标题:高一数学必修3概率部分知识点总结及习题训练学生版
链接地址:https://www.777doc.com/doc-2001067 .html