您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 道路与桥梁工程用石料的技术性质
道路与桥梁工程用石料的技术性质一、水泥混凝土路面用粗集料压碎值水泥混凝土路面用粗集料的压碎值指标试验方法(JTJ058T0315—1994)与前述普通混凝土相同。二、沥青路面用粗集料压碎值沥青路面用粗集料压碎值指标的测定,根据现行规程(JTJ058T0316—2000)的规定,是将13.2~16mm的试样m0克,装入专用试样筒中,逐级施加400KN的荷载,卸荷后用孔径2.36mm的筛子过筛,称取通过2.36mm筛孔的全部细料重量计作m1,则压碎值指标按下式计算:(4-3)式中:——集料压碎值(%);m0——试验前试样重量(g);m1——试验后通过2.36mm筛孔的细料重量(g)。三、道路用粗集料磨光值高等级公路对路面的抗滑性能有一定的要求,作为路面用的集料,在车辆轮胎的作用下,不仅要求具有高的抗磨耗性能,而且要求具有高的抗磨光性。根据现行规程(JTJ058T0321—94)的规定,集料的抗磨光性采用磨光值表示(简称PSV)。磨光值的测试方法是选取10~15mm的试样,密排于试模中,用环氧树脂砂浆固结成一整体,每组4个试件。加速磨光机的道路轮在试样表面以640±10r/min的速度旋转,先用30号金刚砂水磨3h,再用280号金刚砂水磨3h,用摆式摩擦系数仪测定摩擦系数值,经换算后得磨光值(详见试验部分)。集料的磨光值越高,表示抗滑性能越好。高速公路和一级公路的集料磨光值要求不小于42,普通公路不小于35。玄武岩、安山岩、砂岩和花岗岩的磨光值一般较高。几种常用集料的磨光值列于表4-9。表4-9常用岩石的磨光值岩石名称石灰岩角页岩斑岩石英岩花岗岩玄武岩砂岩磨光值平均值43455658596272范围30~7040~5043~7145~6745~7045~8160~82四、道路用粗集料冲击值集料抵抗多次连续重复冲击荷载作用的性能,称为抗冲击韧性,常用集料冲击值(LSV)表示。根据现行规程(JTJ058T0322—2000)的规定,集料冲击值的测试是采用方孔筛筛取9.5~13.2mm的试样m克,装入金属盛样器中,在冲击值试验仪中用冲击锤自380±5mm的高度自由落锤冲击15次,再用2.36mm的筛筛去被冲碎的细粒,称量筛余,计作m1,则冲击值指标LSV按下式计算:(4-4)式中:LSV——集料的冲击值(%);m——原试样重量(g);m1——试验后通过2.36mm的试样重量(g)。集料的冲击值越大,表明集料的抗冲击性能越差。高速公路和一级公路的值要求不大于28%,普通公路不大于30%。五、道路用粗集料磨耗值集料磨耗值用于评定抗滑表层的集料抵抗车轮撞击及磨耗的能力。根据现行规程(JTJ058T0323—2000)的规定,集料磨耗值采用道瑞磨耗机测定。将10~15mm的石子单层紧排于两个试模内(每个试模内不少于24粒),用环氧树脂砂浆固结成一整体,用石英砂磨料在磨盘上磨500转,称取磨耗前后的试样重量,按下式计算集料的磨耗值。(4-5)式中:AAV——集料道瑞磨耗值;m0——磨耗前试件的重量(g);m1——磨耗后试件的重量(g);——集料饱和面干密度(g/cm3)。集料磨耗值越高,表示集料的耐磨性越差。高速公路和一级公路抗滑面层用集料的磨耗值不大于14,普通公路不大于16。六、道路用集料磨耗性磨耗性是石料抵抗撞击、剪切和摩擦等综合作用的性能。常用洛杉机法磨耗试验(JTJ058T0317—2000)和狄法尔法磨耗试验(砾石JTJ058T0318—1994,碎石JTJ058T0319—1994)两种方法(详见试验部分),用磨耗损失大小评价石料的抗磨耗性。磨耗损失按下式计算:(4-6)式中:Q——石料的磨耗率(%);m0——试验前石料的重量(g);m1——试验后石料在1.7mm(方孔筛)或2.0mm(圆孔筛)上的重量(g)。石料的磨耗率越大,表示石料的耐磨性能越差。七、道路用石料耐候性用于道路与桥梁工程的石料抵抗大气自然因素作用的能力称为耐候性。道路与桥梁工程由于都是暴露于大自然中无遮盖的建筑物,长期受到各种自然因素的作用。如温度升降引起的温度应力作用;干湿循环引起的风化作用;冰冻引起的膨胀破坏作用等等。其力学性能将逐渐下降。通常用抗冻性和坚固性两项指标来衡量石料的耐候性优劣。对于用于桥梁工程的石料,当月平均气温低于-10℃时,抗冻性试验必须合格,其中耐冻系数(冻融循环前后饱水抗压强度比)必须大于0.75。八、道路用石料的技术要求道路工程用石料根据造岩矿物的成分、含量以及组织结构分为四大岩类:Ⅰ.岩浆岩类:如花岗岩、正长岩、辉长岩、辉绿岩、闪长岩、橄榄岩、玄武岩、安山岩、流纹岩等。Ⅱ.石灰岩类:石灰岩、白云岩、泥灰岩等。Ⅲ.砂岩和片麻岩类:石英岩、砂岩、片麻岩、石英片麻岩等。Ⅳ.砾石类。根据石料的饱水抗压强度和磨耗率,各岩石类分为四个等级:1级:最坚硬的岩石;2级:坚硬的岩石;3级:中等强度的岩石;4级:较软的岩石。常用天然石料的主要技术指标见表4-10。表4-10常用天然石料的主要技术指标岩石类别主要岩石名称石料等级技术标准饱水强度(MPa)磨耗率(%)洛杉机法狄法尔法Ⅰ岩浆岩类花岗岩、辉绿岩、玄武岩、安山岩等1>120<25<42100~12025~304~5380~10030~455~7445~607~10Ⅱ石灰岩类石灰岩、白云岩、泥灰岩等1>100<30<5280~10030~355~6360~8035~506~12430~6050~6012~20Ⅲ砂岩和片麻岩类石英岩、砂岩、片麻岩、石英片、麻岩等1>100<30<5280~10030~355~7350~8035~457~10430~5045~6010~15Ⅳ砾石类1<20<5220~305~7330~507~12450~6012~20第四节普通混凝土的技术性质一、新拌混凝土的性能(一)混凝土的和易性1.和易性的概念。新拌混凝土的和易性,也称工作性,是指拌合物易于搅拌、运输、浇捣成型,并获得质量均匀密实的混凝土的一项综合技术性能。通常用流动性、粘聚性和保水性三项内容表示。流动性是指拌合物在自重或外力作用下产生流动的难易程度;粘聚性是指拌合物各组成材料之间不产生分层离析现象;保水性是指拌合物不产生严重的泌水现象。通常情况下,混凝土拌合物的流动性越大,则保水性和粘聚性越差,反之亦然,相互之间存在一定矛盾。和易性良好的混凝土是指既具有满足施工要求的流动性,又具有良好的粘聚性和保水性。因此,不能简单地将流动性大的混凝土称之为和易性好,或者流动性减小说成和易性变差。良好的和易性既是施工的要求也是获得质量均匀密实混凝土的基本保证。2.和易性的测试和评定。混凝土拌合物和易性是一项极其复杂的综合指标,到目前为止全世界尚无能够全面反映混凝土和易性的测定方法,通常通过测定流动性,再辅以其他直观观察或经验综合评定混凝土和易性。流动性的测定方法有坍落度法、维勃稠度法、探针法、斜槽法、流出时间法和凯利球法等十多种,对普通混凝土而言,最常用的是坍落度法和维勃稠度法。(1)坍落度法:将搅拌好的混凝土分三层装入坍落度筒中(见图4-5a),每层插捣25次,抹平后垂直提起坍落度筒,混凝土则在自重作用下坍落,以坍落高度(单位mm)代表混凝土的流动性。坍落度越大,则流动性越好。粘聚性通过观察坍落度测试后混凝土所保持的形状,或侧面用捣棒敲击后的形状判定,如图4-5所示。当坍落度筒一提起即出现图中(c)或(d)形状,表示粘聚性不良;敲击后出现(b)状,则粘聚性好;敲击后出现(c)状,则粘聚性欠佳;敲击后出现(d)状,则粘聚性不良。保水性是以水或稀浆从底部析出的量大小评定(见图4-5b)。析出量大,保水性差,严重时粗骨料表面稀浆流失而裸露。析出量小则保水性好。图4-5混凝土拌合物和易性测定根据坍落度值大小将混凝土分为四类:①大流动性混凝土:坍落度≥160mm;②流动性混凝土:坍落度100~150mm;③塑性混凝土:坍落度10~90mm;④干硬性混凝土:坍落度10mm坍落度法测定混凝土和易性的适用条件为:a.粗骨料最大粒径≤40mm;b.坍落度≥10mm。对坍落度小于10mm的干硬性混凝土,坍落度值已不能准确反映其流动性大小。如当两种混凝土坍落度均为零时,但在振捣器作用下的流动性可能完全不同。故一般采用维勃稠度法测定。(2)维勃稠度法:坍落度法的测试原理是混凝土在自重作用下坍落,而维勃稠度法则是在坍落度筒提起后,施加一个振动外力,测试混凝土在外力作用下完全填满面板所需时间(单位:秒)代表混凝土流动性。时间越短,流动性越好;时间越长,流动性越差。见示意图4-6。图4-6维勃稠度试验仪1.容器;2.坍落度筒;3.圆盘;4.滑棒;5.套筒;6.13.螺栓;7.漏斗;8.支柱;9.定位螺丝;10.荷重;11.元宝螺丝;12.旋转架(3)坍落度的选择原则:实际施工时采用的坍落度大小根据下列条件选择。①构件截面尺寸大小:截面尺寸大,易于振捣成型,坍落度适当选小些,反之亦然。②钢筋疏密:钢筋较密,则坍落度选大些。反之亦然。③捣实方式:人工捣实,则坍落度选大些。机械振捣则选小些。④运输距离:从搅拌机出口至浇捣现场运输距离较远时,应考虑途中坍落度损失,坍落度宜适当选大些,特别是商品混凝土。⑤气候条件:气温高、空气相对湿度小时,因水泥水化速度加快及水份挥发加速,坍落度损失大,坍落度宜选大些,反之亦然。一般情况下,坍落度可按表4-11选用。表4-11混凝土浇筑时的坍落度(mm)构件种类坍落度基础或地面等的垫层、无配筋的大体积结构(挡土墙、基础等)或配筋稀疏的结构10~30板、梁和大型及中型截面的柱子等30~50配筋密列的结构(薄壁、斗仓、简仓、细柱等)50~70配筋特密的结构70~903.影响和易性的主要因素。(1)单位用水量单位用水量是混凝土流动性的决定因素。用水量增大,流动性随之增大。但用水量大带来的不利影响是保水性和粘聚性变差,易产生泌水分层离析,从而影响混凝土的匀质性、强度和耐久性。大量的实验研究证明在原材料品质一定的条件下,单位用水量一旦选定,单位水泥用量增减50~100kg/m3,混凝土的流动性基本保持不变,这一规律称为固定用水量定则。这一定则对普通混凝土的配合比设计带来极大便利,即可通过固定用水量保证混凝土坍落度的同时,调整水泥用量,即调整水灰比,来满足强度和耐久性要求。在进行混凝土配合比设计时,单位用水量可根据施工要求的坍落度和粗骨料的种类、规格,根据JGJ55-2000《普通混凝土配合比设计规程》按表4-12选用,再通过试配调整,最终确定单位用水量。表4-12混凝土单位用水量选用表项目指标卵石最大粒径(mm)碎石最大粒径(mm)102031.540162031.540坍落度(mm)10~3019017016015020018517516535~5020018017016021019518517555~7021019018017022020519518575~90215195185175230215205195维勃稠度(s)16~20175160-145180170-15511~15180165-150185175-1605~10185170-155190180-165注:1.本表用水量系采用中砂时的平均取值,如采用细砂,每立方米混凝土用水量可增加5~10kg,采用粗砂时则可减少5~10kg。2.掺用各种外加剂或掺合料时,可相应增减用水量。3.本表不适用于水灰比小于0.4时的混凝土以及采用特殊成型工艺的混凝土。(2)浆骨比浆骨比指水泥浆用量与砂石用量之比值。在混凝土凝结硬化之前,水泥浆主要赋予流动性;在混凝土凝结硬化以后,主要赋予粘结强度。在水灰比一定的前提下,浆骨比越大,即水泥浆量越大,混凝土流动性越大。通过调整浆骨比大小,既可以满足流动性要求,又能保证良好的粘聚性和保水性。浆骨比不宜太大,否则易产生流浆现象,使粘聚性下降。浆骨比也不宜太小,否则因骨料间缺少粘结体,拌合物易发生崩塌现象。因此,合理的浆骨比是混凝土拌合物和易性的良好保证。(3)水灰比水灰比即水用量与水泥用量之比。在水泥用量和骨料用量不变的情况下,水灰比增大
本文标题:道路与桥梁工程用石料的技术性质
链接地址:https://www.777doc.com/doc-2020151 .html