您好,欢迎访问三七文档
..函数综合应用题一、题目分析及题目对学生的要求:1、求解析式:要求学生能够根据题意建立相应坐标系,将实际问题转化成数学问题。需要注意的是:(1)不能忘记写自变量的取值范围;(2)在考虑自变量的取值范围时要结合它所代表的实际意义。2、求最值:实际生活中的最值能够指导人们进行决策,这一问要求学生能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。最值的求法:(1)一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。(2)二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。3、求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。推荐思路:画出不等式左右两边的图象,结合函数图象求出x的取值范围。备选思路一:先将不等号看做等号,求出x的取值,再结合图象考虑将等号还原为不等号后x的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。二、函数应用题的分类:Ⅰ、文字题建模型:这是常规应用题,方法是所有的已知条件直接给出,从题目中可以一目了然的得到数量,根据数量关系构造函数解析式。1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)..(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).(2)当x为何值时,S有最大值?并求出最大值.(参考公式:二次函数2yaxbxc(0a),当2bxa时,244acbya最大(小)值)4、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数ykxb,且65x时,55y;75x时,45y.(1)求一次函数ykxb的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围...4、某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。(1)请建立销售价格y(元)与周次x之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为12)8(812xz,1≤x≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?Ⅱ、表格型应用题:题目中除了文字还出现了表格,故分析数量关系时既要对文字中的数量关系进行理解,还要对表格中的数量进行分析,从而解决问题。1、茂名石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:出厂价成本价排污处理费甲种塑料2100(元/吨)800(元/吨)200(元/吨)乙种塑料2400(元/吨)1100(元/吨)100(元/吨)每月还需支付设备管理、维护费20000元(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为1y元和2y元,分别求1y和2y与x的函数关系式(注:利润=总收入-总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?价目品种..2、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系502600yx,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:月份1月5月销售量3.9万台4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).(参考数据:345.831≈,355.916≈,376.083≈,386.164≈)3、某商场经营一批进价为2元的小商品,在市场营销中发现日销售单价x元与日销售量y件有如下关系:x35911y181462(1)预测此商品日销售单价为11.5元时的日销售量;(2)设经营此商品日销售利润(不考虑其他因素)为p元,根据销售规律,试求日销售利润p元与销售单价x元之间的函数关系式,问日销售利润p是否存在最大值或最小值?若有,试求出;若无,请说明理。..4、某厂从2001年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2005年已投人技改资金5万元.①预计生产成本每件比2004年降低多少万元?②如果打算在2005年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元(结果精确到0.01万元)?5、小明代表班级参加校运会的铅球项目,他想:“怎样才能将铅球推得更远呢?”于是找来小刚做了如下的探索:小明手挚铅球在控制每次推出时用力相同的条件下,分别沿与水平线成30°、45°、60°方向推了三次。铅球推出后沿抛物线形运动。如图,小明推铅球时的出手点距地面2m,以铅球出手点所在竖直方向为y轴、地平线为x轴建立直角坐标系,分别得到的有关数据如下表:年度2001200220032004投入技改资金z(万元)2.5344.5产品成本,(万元/件)7.264.54推铅球的方向与水平线的夹角30°45°60°铅球运行所得到的抛物线解析式y1=-0.06(x-3)2+2.5y2=______(x-4)2+3.6y3=-0.22(x-3)2+4估测铅球在最高点的坐标P1(3,2.5)P2(4,3.6)P3(3,4)..(1)请你求出表格中两横线上的数据,写出计算过程,并将结果填入表格中的横线上;(2)请根据以上数据,对如何将铅球推得更远提出你的建议。6、“黄海”生化食品研究所欲将甲、乙、丙三种食物混合研制成100千克食品,并规定研制成的混合食品中至少需要44000单位的维生素A和48000单位的维生素B.三种食物的维生素A、B的含量及成本如下表所示:设取甲、乙、丙三种食物的质量分别为x千克、y千克、z千克.(1)根据题意列出等式或不等式,并证明:y≥20且2x-y≥40;(2)若限定混合食品中要求含有甲种食物的质量为40千克,试求此时制成的混合食品的总成本w的取值范围,并确定当w取最小值时,可取乙、丙两种食物的质量.铅球落点到小明站立处的水平距离9.5m___________m7.3m类别甲种食物乙种食物丙种食物维生素A(单位/千克)400600400维生素B(单位/千克)800200400成本(元/千克)9128..Ⅲ、图像型应用题:此类应用题除了在文字中体现出数量关系,图形中也有数量关系,解决问题时要学会把图像中的数量关系理解成文字的数量关系,继而解决问题。图像型应用题可分为两种:第一种,利用图形解决问题;第二种,构造适当图形解决问题。1、某跳水队员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线,图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中最高出距水面3210米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误,(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中调整好入水姿势时,距池边的水平距离为533米,问此次跳水会不会失误并通过计算说明理由。2、如图,有一座抛物线型拱桥,在正常水位时水面AB的宽是20米,如果水位上升3米时,水面CD的宽为10米,(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物质的货车从甲地出发,要经过此桥开往乙地,已知甲地到此桥280千米,(桥长忽略不计)货车以每小时40千米的速度开往乙地,当行驶到1小时时,忽然接到紧急通知,前方连降大雨,造成水位以每小时0.25米的速度持续上涨,(货车接到通知时水位在CD处),当水位达到桥拱最高点O时,禁止车辆通行;试问:汽车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过多少千米?..3、如图所示,是一条高速公路的隧道口在平面直角坐标系上的示意图,点A和A1、点B和B1分别关于y轴对称,隧道拱部分BCB1为一条抛物线,最高点C离路面AA1的距离为8米,点B离路面为6米,隧道的宽度AA1为16米;(1)求隧道拱抛物线BCB1的函数解析式;(2)现有一大型运货汽车,装载某大型设备后,其宽度为4米,车载大型设备的顶部与路面的距离均为7米,他能否通过这个隧道?请说明理由。4、某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,在对历年市场行销和生产情况进行了调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两方面的信息(如甲、乙两图)注:甲、乙两图中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本,生产成本月份最低;甲图的图象是线段,乙图的图象是抛物线.请根据图象提供的信息说明,解决下列问题:⑴在3月份出售这种蔬菜,每千克的收益是多少?⑵哪个月出售这种蔬菜,每千克的收益最大?说明理由.(收益=售价-成本)BB1AA1OCyx..5、如上图,一单杆高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。(1)一身高0.7m的小孩站在离立柱0.4m处,其头部刚好触上绳子,求绳子最低点到地面的距离,(2)为供孩子们打秋千,把绳子剪断后,中间系上一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳子正好各为2米,木板与地面平行,求这时木板到地面的距离。(供选用数据:8.136.3,9.164.3,1.239.4)6、路在山腹行是沪蓉西高速公路的显著特点之一,全线共有隧道37座,共计长达742421.2米。下图是正在修建的庙垭隧道的截面,截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.(1).建立恰当的平面直角坐标系,并求出隧道拱抛物线的解析式;(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标
本文标题:函数综合应用题
链接地址:https://www.777doc.com/doc-2024517 .html