您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 苏教版八年级上册数学期末复习知识点+常考题型
苏教版八年级上册期末复习(知识点+考试热点题型)汇总第一章全等三角形知识点梳理1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等..;③三角形全等不因位置发生变化而改变。2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。⑵全等三角形的周长相等、面积相等。⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定:①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。④边边边公理(SSS)有三边对应相等的两个三角形全等。⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA);②找夹边(SAS).⑶已知两角:①找夹边(ASA);②找其它边(AAS).常考题型汇总一、选择题1.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A、∠A=∠CB、AD=CBC、BE='DF'D、AD∥BC2.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列条件后,不能判定△ABE≌△ACD的是()A、AD=AEB、BE=CDC、∠AEB=∠ADCD、AB=AC3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC4.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC5.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°6.在△ABC中和△DEF中,已知ACDF,CF,增加下列条件后还不能判定△ABC≌△DEF的是()A.BCEFB.ABDEC.ADD.BE7.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=ACB.BD=CDC.∠B=∠CD.∠BDA=∠CDA二、填空题1.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.2.如图所示,已知△ABC≌△ADE,∠C=∠E,AB=AD,则另外两组对应边为________,另外两组对应角为________.3.如图,△ACE≌△DBF,点A、B、C、D共线,若AC=5,BC=2,则CD的长度等于________.4.如图,AB=AD,只需添加一个条件________,就可以判定△ABC≌△ADE.5.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为________.三、解答题1.如图,已知△ABC≌△BAD,AC与BD相交于点O,求证:OC=OD.2.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.3.已知:如图,点D、E在BC上,且BD=CE,AD=AE,求证:AB=AC.4已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.5.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.BCDEFABCDEFAABCDE6.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.第二章轴对称知识点梳理1、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。2、轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3、线段的垂直平分线:①性质定理:线段垂直平分线上的点到线段两个端点的距离相等。②判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。拓展:三角形三条边的垂直平分线的交点到三个顶点....的距离相等4、角的角平分线:①性质定理:角平分线上的点到角两边的距离相等。OCEBDA②判定定理:到角两个边距离相等的点在这个角的角平分线上。拓展:三角形三个角的角平分线的交点到三.条边..的距离相等。5、等腰三角形:①性质定理:⑴等腰三角形的两个底角相等;(等边对等角)⑵等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合。(三线合一)②判断定理:一个三角形的两个相等的角所对的边也相等。(等角对等边)6、等边三角形:①性质定理:⑴等边三角形的三条边都相等;⑵等边三角形的三个内角都相等,都等于60°;拓展:等边三角形每条边都能运用三线合一....这性质。②判断定理:⑴三条边都相等的三角形是等边三角形;⑵三个角都相等的三角形是等边三角形;有两个角是60°的三角形是等边三角形;⑶有一个角是60°的等腰三角形是等边三角形。7、直角三角形推论:⑴直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半。⑵直角三角形中,斜边上的中线等于斜边的一半。拓展:直角三角形常用面积法...求斜边上的高。常考题型汇总一、选择题1.下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.2.(3分)下列图案属于轴对称图形的是()A.B.C.D.3.下列图形中,不是轴对称图形的是4.下列图形中是轴对称图形是()5.如图,在△ABC中,ABAC,D为BC中点,BAD35°,则C的度数为()A.35°B.45°C.55°D.60°6.如图,在△ABC中,AC4cm,线段AB的垂直平分线交AC于点N,△BCN的长是7cm,则BC的长为()A.1cmB.2cmC.3cmD.4cm7.(3分)已知三角形两边长分别为7、11,那么第三边的长可以是()A.2B.3C.4D.58.(3分)一个多边形每个外角都等于36°,则这个多边形是几边形()A.7B.8C.9D.109.(3分)如图,已知△ABC中,∠A=75°,则∠1+∠2=()A.335°B.255°C.155°D.150°10.(3分)若等腰三角形的两边长分别为6和8,则周长为()A.20或22B.20C.22D.无法确定11.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为()A.8B.16C.24D.3212.如图,在ABC中,,35ACADBDB,则CAD的度数为A.70°B.55°C.40°D.35°13.如图,ABC中,90,3,4ACBBCAC,点D是AB的中点,将ACD沿CD翻折得到ECD,连接,AEBE,则线段BE的长等于A.75B.32C.53D.214.如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cmB.9cmC.9cm或12cmD.12cm二、填空题1.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB6,AC9,则△ABD的周长是__________.2.如图,△ABC中,AB17,BC10,CA21,AM平分BAC,点D、E分别为AM、AB上的动点,则BDDE的最小值是__________.3.(3分)若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是.4.(3分)如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,则PD=.5.等腰三角形的两条边长为3和7,则第三边长为.6.如图,点P是AOB的平分线上一点,//PCOA,交OB于点C,PDOA,垂足为D.若60,4AOBOC,则PD=.7.如图,在RtABC中,90ACB,6AC,8BC,BAC的平分线AD交BC于点D.若P、Q分别是AD和AC上的动点,则PCPQ的最小值是.8.如图,在ABC中,,4ABACBC,面积是12,AC的垂直平分线EF分别交,ABAC边于点,EF.若点D为BC边的中点,点P为线段EF上一动点,则PCD周长的最小值为.三、解答题1.(本题满分6分)已知:如图,在△ABC中,ACB90°,ACBC,D是AB的中点,点E在AC上,点F在BC上,且AECF.(1)求证:DEDF,DEDF;(2)若AC2,求四边形DECF面积.2.(10分)(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)3.(10分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.4.(12分)如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)5.(本题满分8分)在如图所示的正方形网格中,每个小正方形的边长都是1,ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出ABC关于y轴对称的ABC,并写出点C的坐标;(3)判断ABC的形状.并说明理由.第三章勾股定理勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a2+b2=c2,那么这个三角形是直角三角形。3、勾股数:满足a2+b2=c2的三个正整数,称为勾股数。常见勾股数:3,4,5;6,8,10;9,12,15;5,12,13。4、简单运用:⑴勾股定理——常用于求边长、周长、面积;理解:①已知直角三角形的两边求第三边,并能求出周长、面积。②用于证明线段平方关系的问题。③利用勾股定理,作出长为n的线段⑵勾股定理的逆定理——常用于判断三角形的形状;理解:①确定最大边(不妨设为c);②若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)⑶难点:运用勾股定理立方程解决问题。常考热点题型汇总一、单选题(共10题;共30分)1.如图,点A的正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()A.3B.2+2C.10D.42.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16B.17C.18D.193.如图,在长、宽都为3cm,高为8cm的长方体纸盒的A处有一粒米粒,一只蚂蚁在B处去觅食,那么它所行的最短路线的长是()A.(32+8)cmB.10cmC.82cmD.无法确定4.要登上某建筑物,靠墙有一架梯子,底端离建筑物3m,顶端离地面4m,则梯子的长度为()A.2mB.3mC.4mD.5m5.若直角三角形的两边长分别为a,b,且满足a2
本文标题:苏教版八年级上册数学期末复习知识点+常考题型
链接地址:https://www.777doc.com/doc-2027662 .html