您好,欢迎访问三七文档
蜗杆传动设计蜗杆传动是在空间交错的两轴间传递运动和动力的一种传动,两轴线间的夹角可为任意值,常用的为90°。这种传动由于具有结构紧凑、传动比大、传动平稳以及在一定的条件下具有可靠的自锁性等优点,它广泛应用在机床、汽车、仪器、起重运输机械、冶金机械及其它机器或设备中。基本要求1.熟练掌握蜗杆的传动特点、失效形式和计算准则;2.熟练掌握蜗杆和蜗轮的结构特点;3.掌握蜗杆传动的受力分析、滑动速度和效率;4.掌握蜗杆传动的热平衡计算;5.了解蜗杆传动的强度计算特点;6.了解蜗杆的传动类型;8.1.1蜗轮蜗杆的形成蜗杆蜗轮传动是由交错轴斜齿圆柱齿轮传动演变而来的。小齿轮的轮齿分度圆柱面上缠绕一周以上,这样的小齿轮外形像一根螺杆,称为蜗杆。大齿轮称为蜗轮。为了改善啮合状况,将蜗轮分度圆柱面的母线改为圆弧形,使之将蜗杆部分地包住,并用与蜗杆形状和参数相同的滚刀范成加工蜗轮,这样齿廓间为线接触,可传递较大的动力。蜗杆蜗轮传动的特征:其一,它是一种特殊的交错轴斜齿轮传动,交错角为∑=90°,z1很少,一般z1=1~4;其二,它具有螺旋传动的某些特点,蜗杆相当于螺杆,蜗轮相当于螺母,蜗轮部分地包容蜗杆。8.1.2蜗杆传动的类型按蜗杆形状的不同可分:1.圆柱蜗杆传动-普通圆柱蜗杆(阿基米德蜗杆、渐开线蜗杆、法向直廓蜗杆、锥面包络蜗杆)和圆弧蜗杆2.环面蜗杆传动3.锥蜗杆传动8.1.3蜗杆传动的特点传动比大,结构紧凑传动平稳,无噪声具有自锁性传动效率较低,磨损较严重蜗杆轴向力较大,致使轴承摩擦损失较大。8.1.4蜗杆传动的应用由于蜗杆蜗轮传动具有以上特点,故常用于两轴交错、传动比较大、传递功率不太大或间歇工作的场合。当要求传递较大功率时,为提高传动效率,常取z1=2-4。此外,由于当γ1较小时传动具有自锁性,故常用在卷扬机等起重机械中,起安全保护作用。它还广泛应用在机床、汽车、仪器、冶金机械及其它机器或设备中;蜗杆传动由蜗杆相对于蜗轮的位置不同分为上置蜗杆和下置蜗杆传动。8.2.1普通圆柱蜗杆传动的基本参数及其选择1.基本参数:(1)模数m和压力角α:在中间平面中,为保证蜗杆蜗轮传动的正确啮合,蜗杆的轴向模数ma1和压力角αa1应分别相等于蜗轮的法面模数mt2和压力角αt2,即ma1=mt2=mαa1=αt2蜗杆轴向压力角与法向压力角的关系为:tgαa=tgαn/cosγ式中:γ-导程角。(2)蜗杆的分度圆直径d1和直径系数q为了保证蜗杆与蜗轮的正确啮合,要用与蜗杆尺寸相同的蜗杆滚刀来加工蜗轮。由于相同的模数,可以有许多不同的蜗杆直径,这样就造成要配备很多的蜗轮滚刀,以适应不同的蜗杆直径。显然,这样很不经济。为了减少蜗轮滚刀的个数和便于滚刀的标准化,就对每一标准的模数规定了一定数量的蜗杆分度圆直径d1,而把及分度圆直径和模数的比称为蜗杆直径系数q,即:q=d1/m常用的标准模数m和蜗杆分度圆直径d1及直径系数q,见匹配表。(3)蜗杆头数z1和蜗轮齿数z2蜗杆头数可根据要求的传动比和效率来选择,一般取z1=1-10,推荐z1=1,2,4,6。选择的原则是:当要求传动比较大,或要求传递大的转矩时,则z1取小值;要求传动自锁时取z1=1;要求具有高的传动效率,或高速传动时,则z1取较大值。蜗轮齿数的多少,影响运转的平稳性,并受到两个限制:最少齿数应避免发生根切与干涉,理论上应使z2min≥17,但z2<26时,啮合区显著减小,影响平稳性,而在z2≥30时,则可始终保持有两对齿以上啮合,因之通常规定z2>28。另一方面z2也不能过多,当z2>80时(对于动力传动),蜗轮直径将增大过多,在结构上相应就须增大蜗杆两支承点间的跨距,影响蜗杆轴的刚度和啮合精度;对一定直径的蜗轮,如z2取得过多,模数m就减小甚多,将影响轮齿的弯曲强度;故对于动力传动,常用的范围为z2≈28-70。对于传递运动的传动,z2可达200、300,甚至可到1000。z1和z2的推荐值见下表i=z2/z1z1z2≈5629-317-15429-6114-30229-6129-82129-82(4)导程角γ蜗杆的形成原理与螺旋相同,所以蜗杆轴向齿距pa与蜗杆导程pz的关系为pz=z1pa由下图可知:tanγ=pz/πd1=z1pa/πd1=z1m/d1=z1/q导程角γ的范围为3.5°一33°。导程角的大小与效率有关。导程角大时,效率高,通常γ=15°-30°。并多采用多头蜗杆。但导程角过大,蜗杆车削困难。导程角小时,效率低,但可以自锁,通常γ=3.5°一4.5°(5)传动比I传动比i=n主动1/n从动2蜗杆为主动的减速运动中i=n1/n2=z2/z1=u式中:n1-蜗杆转速;n2-蜗轮转速。减速运动的动力蜗杆传动,通常取5≤u≤70,优先采用15≤u≤50;增速传动5≤u≤15。普通圆柱蜗杆基本尺寸和参数及其与蜗轮参数的匹配表。8.2.2蜗杆传动变位的特点蜗杆传动变位变位蜗杆传动根据使用场合的不同,可在下述两种变位方式中选取一种。1)变位前后,蜗轮的齿数不变(z2'=z2),蜗杆传动的中心距改变(a'≠a),如图9-8a、c所示,其中心距的计算式如下:a'=a+x2m=(d1+d2+2x2m)/22)变位前后,蜗杆传动的中心距不变(a'=a),蜗轮齿数发生变化(z2'≠z2),如图9-8d、e所示,z2'计算如下:因a'=a则z2'=z2-2x2蜗杆传动变位:8.2.3普通圆柱蜗杆传动的几何尺寸计算普通圆柱蜗杆传动基本几何尺寸计算关系式:名称代号计算关系式说明中心距aa=(d1+d2+2x2m)/2按规定选取蜗杆头数z1按规定选取蜗轮齿数z2按传动比确定齿形角aaa=20。或an=20。按蜗杆类型确定模数mm=ma=mn/cosr按规定选取传动比ii=n1/n2蜗杆为主动,按规定选取齿数比uu=Z2/Z1当蜗杆主动时,i=u蜗轮变位系数x2x2=a/m-(d1+d2)/2m蜗杆直径系数qq=d1/m蜗杆轴向齿距papa=πm蜗杆导程pzpz=πmz1蜗杆分度圆直径d1d1=mq按规定选取蜗杆齿顶圆直径da1da1=d1+2ha1=d1+2ha*m蜗杆齿根圆直径df1df1=d1-2hf1=da-2(ha*m+c)顶隙cc=c*m按规定渐开线蜗杆齿根圆直径db1db1=d1.tgr/tgrb=mz1/tgrb蜗杆齿顶高ha1ha1=ha*m=1/2(da1-d1)按规定蜗杆齿根高hf1hf1=(ha*+c*)m=1/2(da1-df1)蜗杆齿高h1h1=hf1+ha1=1/2(da1+df1)蜗杆导程角rtgr=mz1/d1=z1/q渐开线蜗杆基圆导程角rbcosrb=cosr.cosan蜗杆齿宽b1见表11-4由设计确定蜗轮分度圆直径d2d2=mz2=2a-d1-2x2.m蜗轮喉圆直径da2da2=d2+2ha2蜗轮齿根圆直径df2df2=d2-2ha2蜗轮齿顶高ha2ha2=1/2(da2-d2)=m(ha*+x2)蜗轮齿根高hf2hf2=1/2(d2-df2)=m(ha*-x2+c*)蜗轮齿高h2h2=ha2+hf2=1/2(da2-df2)蜗轮咽喉母圆半径rg2rg2=a-1/2(da2)蜗轮齿宽b2由设计确定蜗轮齿宽角θθ=2arcsin(b2/d1)蜗杆轴向齿厚sasa=1/2(πm)蜗杆法向齿厚snsn=sa.cosr蜗轮齿厚st按蜗杆节圆处轴向齿槽宽ea'确定蜗杆节圆直径d1'd1'=d1+2x2m=m(q+2x2)蜗杆节圆直径d2'd2'=d28.3.1蜗杆传动的失效形式、计算准则及常用材料失效形式:点蚀、齿面胶合及过度磨损由于蜗杆传动类似于螺旋传动啮合效率较低、相对滑动速度较大,点蚀、磨损和胶合最易发生,尤其当润滑不良时出现的可能性更大。又由于材料和结构上的原因,蜗杆螺旋齿部分的强度总是高于蜗轮轮齿的强度,蜗轮是该传动的薄弱环节。因此,一般只对蜗轮轮齿进行承载能力计算和蜗杆传动的抗胶合能力计算计算准则:开式传动中主要失效形式是齿面磨损和轮齿折断,要按齿根弯曲疲劳强度进行设计。闭式传动中主要失效形式是齿面胶合或点蚀而。要按齿面接触疲劳强度进行设计,而按齿根弯曲疲劳强度进行校核。此外,闭式蜗杆传动,由于散热较为困难,还应作热平衡核算。常用材料:蜗杆材料、蜗轮材料不仅要求具有足够的强度,更重要的是要具有良好的跑合性能、耐磨性能和抗胶合性能。蜗轮传动常采用青铜或铸铁作蜗轮的齿圈,与淬硬并磨制的钢制蜗杆相匹配。8.3.2蜗杆传动的载荷和应力分析受力分析以右旋蜗杆为主动件,并沿图示的方向旋转时,蜗杆螺旋面上的受力情况。设Fn为集中作用于节点P处的法向载荷,它作用于法向截面Pabc内。Fn可分解为三个互相垂直的分力,即圆周力Ft、径向力Fr和轴向力Fa。显然,在蜗杆与蜗轮间,载荷Ft1与Fa2、Fr1与Fr2和Fa1与Ft2对大小相等、方向相反的力。各力的大小可按下式计算:Ft1=Fa2=2T1/d1Ft2=Fa1=2T1/d2Fr1=Fr2=Fa1tanαFn=Fa1/cosαncosγ=Fa2/cosαncosγ=2T2/d2cosαncosγ式中:T1、T2-蜗杆与蜗轮上的转矩N.mm。确定各力的方向:蜗杆为主动件,蜗杆的圆周力方向与蜗杆上啮合点的速度方向相反;蜗杆为从动件,蜗轮的圆周力方向与蜗轮的啮合点的速度方向相同;蜗杆和蜗轮的轴向力方向分别与蜗轮和蜗杆的周向力方向相反;蜗杆和蜗轮的径向力方向分别指向各自的圆心。计算载荷Fca=KFnK=KAKβKv式中:K-载荷系数;KA-使用系数;Kβ-齿向载荷分布系数Kv-动载系数。使用系数(KA)动力机工作机均匀中等冲击严重冲击电动机,汽轮机0.8-1.250.9-1.51-1.75多缸内燃机0.9-1.501-1.751.25-2单缸内燃机1-1.751.25-21.5-2.25注:小值用于每日偶而工作,大值用于长期连续工作。应力分析由于蜗杆传动中,蜗轮比蜗杆的强度低。因此,在应力分析中只要了解蜗轮的情况就可以了。普通圆柱蜗杆传动在中间平面相当于齿条和齿轮的传动,故可以仿照圆柱斜齿轮推倒蜗轮的应力计算公式。蜗轮齿面接触应力蜗轮齿面接触应力仍来源于赫兹公式。接触应力Mpa式中:K-载荷系数;Fn-啮合面的法向载荷,N;ZE-材料的弹性影响系数,,对于青铜或铸铁蜗轮与钢蜗杆配对时,取ZE=160();ρ∑-综合曲率;L0-接触线总长,mm。将上式换算成蜗轮转矩T2和中心距a的关系得:Mpa式中Zρ-蜗杆传动的接触线长度和曲率半径对接触应力的影响系数,简称接触系数,查图8.3.3蜗杆传动的强度计算蜗轮齿面接触疲劳强度计算蜗轮齿根接触疲劳强度的验算公式为:σH≤[σ]HMPa式中:[σ]H-蜗轮齿面的许用接触应力。设计公式为:mm蜗轮齿根弯曲疲劳强度计算蜗轮齿根弯曲疲劳强度的验算公式为:σF≤[σ]FMPa式中:σF-蜗轮齿根的许用弯曲应力。设计公式为:mm3许用应力当蜗轮材料为强度极限σB<300MPa的青铜,蜗轮传动的主要失效形式为蜗轮齿面接触疲劳失效。因此,承载能力取决于蜗轮的接触疲劳强度。则[σ]H=KHN[σ]H',其中[σ]H'为基本许用应力,查表;KHN为接触疲劳强度的寿命系数,KHN=铸锡青铜蜗轮的基本许用接触应力[σ]H'(Mpa)蜗轮材料铸造方法蜗杆螺旋面的硬度≤45HRC45HRC铸锡磷青铜ZCuSn10P1砂模铸造150180金属模铸造220268铸锡锌铅青铜ZCuSn5Pb5Zn5砂模铸造113135金属模铸造128140注:铸锡青铜蜗轮的基本许用接触应力为应力循环次数时之值N=107,当N≠107时,需将表中数值乘以寿命系数KHN;当N25x107时,取N=25x107;当N2.6x105时,取N=2.6x105。如果蜗轮材料为σB>300MPa的青铜或灰铸铁,蜗轮传动的主要失效形式为蜗轮齿面胶合,因尚无完善的胶合强度计算公式,则按接触疲劳强度进行条件性计算。由于胶合不属于疲劳失效,[σ]H与应力循环次数N无关,可直接查表。灰铸铁及铸铝铁青铜蜗轮许用接触应力[σ]H(MPa)材料滑动速度vs(
本文标题:蜗杆传动设计2
链接地址:https://www.777doc.com/doc-2028123 .html