您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 聚焦中考专题1规律探索型问题.
安徽省数学专题一规律探索型问题要点梳理规律探索型问题也是归纳猜想型问题,其特点是:给出一组具有某种特定关系的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.类型有“数列规律”“计算规律”“图形规律”与“动态规律”等题型.要点梳理1.数字猜想型:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.2.数式规律型:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.要点梳理3.图形规律型:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.4.数形结合猜想型:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.解题方法规律探索问题的解题方法一般是通过观察、类比特殊情况(特殊点、特殊数量、特殊线段、特殊位置等)中数据特点,将数据进行分解重组、猜想、归纳得出规律,并用数学语言来表达这种规律,同时要用结论去检验特殊情况,以肯定结论的正确.1.(2014·重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.40B2.(2014·漳州)已知一列数2,8,26,80,…,按此规律,则第n个数是.(用含n的代数式表示)3n-13.(2014·东营)将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为.(45,12)4.(2014·内江)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2014个图形是.△△□□□△○○□□□△○○…□5.(2014·孝感)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.(63,32)数字猜想型问题【例1】(2014·钦州)甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是分.336【点评】本题考查数字的变化规律:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.1.(2014·兰州)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S-S=2101-1,所以S=2101-1,即1+2+22+23+…+2100=2101-1,仿照以上推理计算1+3+32+33+…+32014的值是____.32015-12数式规律型问题【例2】(2014·扬州)设a1,a2,…,a2014是从1,0,-1这三个数中取值的一列数,若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,则a1,a2,…,a2014中为0的个数是.【点评】本题解题的关键是对给出的式子进行正确的变形.1652.(2013·南宁)有这样一组数据a1,a2,a3,…an,满足以下规律:a1=12,a2=11-a1,a3=11-a2,…,an=11-an-1(n≥2且n为正整数),则a2013的值为____.(结果用数字表示)-1图形规律型问题【例3】(2013·安徽)我们把正六边形的顶点及其对称中心称作如图①所示基本图的特征点,显然这样的基本图共有7个特征点.将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图②,图③,……(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图①17图②212图③317图④4_………猜想:在图中,特征点的个数为;(用n表示)5n+222(2)如图,将图放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=;图的对称中心的横坐标为.x1=320133【点评】本题考查图形的应用与作图,是规律探究题,难度中等,注意观察图形及表格,总结规律.3.(2014·深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.485数形结合猜想型问题【例4】(2014·泰安)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(53,0),B(0,4),则点B2014的横坐标为.10070【点评】本题主要考查了点的坐标以及图形变化类,根据题意数形结合得出B点横坐标变化规律是解题关键.4.在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,(1)当m,n互质(m,n除1外无其他公因数)时,观察下列图形并完成下表:mnm+nf123213432354257____347____猜想:当m,n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m,n的关系式是.(不需要证明)66f=m+n-1(2)当m,n不互质时,请画图验证你猜想的关系式是否依然成立.解:当m,n不互质时,上述结论不成立,如图
本文标题:聚焦中考专题1规律探索型问题.
链接地址:https://www.777doc.com/doc-2047079 .html