您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 自组装和材料-lihengde
生物过程仿生——自组装与材料清华大学材料科学与工程系李恒德2003年4月二十一世纪对科学家最大的挑战之一将是制造生命。一种能自我复制,自我组织,甚至有进化为其它东西的体系是可能的——R.N.Zare(美国国家科学理事会主席)能够进行自我拷贝的机器——数学家Neumann将原子放到理想位置的制造物体的能力——物理学家R.P.Feynman生物与自组装(Self-Assembly)生物是由物质组成的,生物物质都具有超分子结构及多级结构。生物是最有经验、最神奇的材料设计师和材料加工厂。自组装是一种普遍存在于生命体系中的现象。自组装是一种方法,对于理解生命是十分关键的。自组装(Self-Assembly)——源于生物分子经过精巧选择链接并服从高精确组装规则的合成分子自组装是一种普遍存在于生命体系中的现象,是生命最本质的内容之一。大量复杂的、具有生物学功能的超分子系统(蛋白质、核酸、生物膜、脂质体等)正是通过分子自组装形成的。例如生物合成的蛋白质就是通过各亚基的分子自组装而形成的具有特定功能的聚合体。无外来因素条件下形成超分子结构的过程,自组装过程是人类不主动介入的过程,其中的原子,分子,分子团和组件自动排列成有序起作用的实体而不需人的介入。它从建造中排除了人手,人们可以设计过程,然后起动它,一旦开始运行,过程就将按照它自己内部的计划进行,可能朝着一个更为有力的稳定状态,或者向着某个系统,其形式和功能已经在它的部件中编码涉及生物学中重要问题的方向及伴随而来的分子微型组件技术。细胞脂质膜、胆固醇/磷脂、病毒的启示细胞膜:磷脂双层结构,5×106个脂类分子/微米•GeneVIIIcodesforthemajorstructuralproteinofthebacteriophageparticles•GeneIIIcodesfortheminorcoatprotein•ThegeneVIIIproteinformsatubulararrayofapprox.2,700identicalsubunitssurroundingtheviralgenome•ApproximatelyfivetoeightcopiesofthegeneIIIproteinarelocatedattheendsofthefilamentousphage(i.e.genomeplusgeneVIIIassembly)•Allowsbindingtobacterialsexpilus•PilusisabacterialsurfacestructureofE.coliwhichharbortheFfactorextrachromosomalelement自组装分类热力学自组装:热力学定律支配的超分子组装过程编码自组装(1)氨基酸残基序列核酸碱基序列形成编码,前者为分子分级结构编码,高级结构具有生物学功能,后者为基因编码(2)DNA指导蛋白的时间序列合成,而由特定时刻的某些蛋白之间的识别、操作、非线性反应,形成系列过程编码(3)生物进化在环境与系统的相适应,从而选择并固化编码程序。热力学自组装是低级过程,可看作简单编码过程.生物学系统的局域化学具有一定的非热力学性质。编码自组装:1介观分子操作及催化,程序化分子组件装配及拆卸酶(蛋白)及其核酸的,核糖体2模板效应:*生物矿化:蛋壳的矿化,骨及牙齿的矿化珍珠层,硅藻编码自组装与生物我们的侧重点由生物过程得到的启发(如细胞膜)有机物/无机物杂化室温、常压溶液化学自组装,作为一种SSP(SoftSolutionProcessing)自组装制备材料实例生物矿化界面类•自组装多层膜(SAMMs)•自组装单层膜(SAM)•微接触印刷术(Microcontactprinting)•SAM+晶体生长三维超分子类•介孔材料•超分子杂化材料•胶体晶体•微铸造(Microcasting)纳米微结构及电子器件大量的实例发表在Nature,Science,AdvancedMaterials,ChemistryofMaterials,Angew.Chem.Int.Ed.Engl.,J.Am.Chem.Soc.,Macromolecular,J.Mater.Chem.自组装的生物矿化*细胞膜及磷脂双层*红蚯蚓牙齿的微结构*海蛇的皮的视觉功能及结构*骨的微结构及其仿生矿化、仿生骨材料*海洋硅藻蛋白的诱导矿化蛋壳的微结构及其矿化珍珠、文石层的微结构植物中矿物与基质的自组装铁蛋白模板的氧化铁自组装HighAbrasionResistancewithSparseMineralization:CopperBiomineralinWormJawsHelgaC.Lichtenegger,ThomasSchöberl,MichaelH.Bartl,HerbertWaite,GalenD.StuckyScience298,389-392(2002)October11.Figure4.(Left)ModelofthearrangementofmineralizedfibersinGlycerajaws.Thefibersareelongatedandorientedalongtheoutercontourofthetip.Theredcirclesdenotethesizeofthesynchrotronx-raybeam(100µm).(A)SAXSonwetGlycerajaws.Thetopimageshowsthescatteringpatternobtainedfromthetip.Notethestronganisotropicsignal.Thesignalfromtherestofthesample(bottomimage)almostvanishedexceptatverysmallangles.(B)SEMimagesoffracturesurfaces.Top:fibrousstructureintipofjaw.Bottom:irregularstructureinrestofjaw.Scalebars,1µm.Figure3.TEMimagesofthinsectionsofaGlycerajawtip.(A)Mineralizedfibers(dark)areembeddedinaproteinmatrix(lightgray).Fibersarefoundincertainlayersonly.Thesurfacelayer(lowerleftcorner)andpartsfurtherinsidethetip(upperrightcorner)arefreeofmineral.Scalebar,2µm.(B)Longfibersunderhighermagnification.Scalebar,100nm.(C)Dark-fieldTEMimage(Braggcontrast)ofthesamesampleshownin(B).Crystallitesthatfulfillthediffractionconditionsappearasbrightspots.Scalebar,100nm.Theinsetinthetoprightcornershowsaselectedareaelectrondiffractionpatternfrompartofafiber.Figure1Appearanceandskeletalstructureofophiocomidbrittlestars.a,Light-indifferentspeciesOphiocomapumilashowsnocolourchangefromday(left)tonight(right).b,Light-sensitivespeciesO.wendtiichangescolourmarkedlyfromday(left)tonight(right).c,Scanningelectronmicrograph(SEM)ofadorsalarmplate(DAP)ofO.wendtiicleansedoforganictissue.d,SEMofthecross-sectionofafracturedDAPfromO.wendtiishowingthetypicalcalciticstereom(S)andtheenlargedlensstructures(L)thatconstitutetheperipherallayer.e,SEMoftheperipherallayerofaDAPofO.pumilashowingthatitlackstheenlargedlensstructures.f,SEMoftheperipherallayerofaDAPfromO.wendtiiwiththeenlargedlensstructures.g,High-magnificationSEMofthecross-sectionofanindividuallensinO.wendtii.Redlinesrepresentthecalculatedprofileofalenscompensatedforsphericalaberration.Theoperationalpartofthecalciticlens(L0)closelymatchestheprofileofthecompensatedlens(boldredlines).Thelightpathsareshowninblue.CalciticmicrolensesaspartofthephotoreceptorsysteminbrittlestarsJOANNAAIZENBERGetal.Nature412,819-822(2001)Figure3Analysisofthefocusingeffectofthelenslayer.a,SuperpositionofthemicrographsshowninFig.2c–e.Photoresistisselectivelyexposedunderthelensareasoutlinedbydashedlines.b,Schematicrepresentationofthefocusingactionoflenseslocatedalongthedottedlineina.Lenseswithafocalplaneaboveh1producenarrowfeaturesinthefirstlithographicexperimentandnofeaturesinthesecond(lens1).Lenseswithafocalpointbelowh2producenarrowfeaturesinthesecondexperimentandnofeaturesinthefirst(lens5).Whenthefocalplaneofalensislocatedsignificantlyaboveh1,nopatternineitherphotoresistlayerisformed(lens3).Patternsinbothphotoresistlayersarerecordedunderlenseswithafocalpointbetweenh1andh2(lenses2and4).c,Distancesfromthefocalpointsoflensestothefirstimagingplane(x)asafunctionofthelensdiameters(L).d,Sizesofthespotsinphotoresist(a)asafunctionofx.Syntheticmoleculesassembleintofibersthatcoaxmineralsintogrowingontop,astruct
本文标题:自组装和材料-lihengde
链接地址:https://www.777doc.com/doc-2052048 .html