您好,欢迎访问三七文档
航海雷达与ARPA第一章基本工作原课第一节测距测方位基本原理1.测距a)利用电磁波特性:1).直接传播(微波波段)2).匀速传播(同一媒质中)3).反射特性(在任何两种媒质的边界面)b)计算公式:S=C(t2-t1)/2其中:S:目标和本船距离;t1:发射时刻;t2:接收时刻;C:电波速度;为300000公里/秒为准确测量(t2-t1),发射信号包络为矩形脉冲。2.测向天线为定向天线,只向一个方向发射,也只接收这个方向的目标回波,实现这个方向的测距。随着天波的转动,实现不同方向的测距。第二节基本组成及各部分作用1)触发电路:每隔一段时产生一个尖脉冲,同时送到发射机、接收机、显示器三部分,使它们同步工作。(触发电路决定工作开始的时间)2)发射机:触发脉冲到来后,立刻产生一个大功率,微波波段,具有一定宽度的脉冲包络射频(雷达工作频率,微波波段)的信号。3)发收开关:发射时;将发射机与天线接通,并将天线与接收机断开。接收时;将发射机与天线断开,并将天线与接收机接通。第二章船用雷达设备第一节中频电源设备为满足船用雷达工作、及工作环境的要求,雷达对电源的电压值、频率值及各指标的稳定性均有具体的要求,船舶上存在低频、高频电源干扰,有船电负载多变化大等等现象。采用专门的中频电源,正是为了防止这些干扰和有害的现象。目前;雷达电源有中频逆变器、中频变流机组二种。第三节雷达发射机一、主要组成及各部分作用1:触发脉冲产生器:相当于时钟电路,使雷达各部分同步工作。2.调制器及预调制器:触发脉冲一到,预调制器输出具有一定宽度的小功率正方波,控制预调制器产生的方波的起始时刻,预调制器产生的方波控制调制器,使调制器产生大功率负高压脉冲。有的雷达没有预调制器,预调制器的功能由调制器完成。所以;调制器是产生高压的部件。3:磁控营:在调制器输出的负高压作用下,磁控营产生矩形调制的微波振荡脉冲.实现能量转换,调制器相当于高压电源。5.2):磁控营基本结构及工作原理磁控营是实现微波振荡的元件,其结构、工作原理,与实际使用中的调试、维护等等事宜有关。下面我们扼要介绍之。A:基本结构阴极和阳极之间的空间,称为空腔,空腔内为真空。空腔内,有永久磁铁提供的恒定磁场,如图示。阴极内含有灯丝,加调制器送来的负高压前,灯丝先通电3min,用于加热阴极,阴极表面有氧化物涂层,加热使其产生自由电子,能量转换是自由电子完成的,没有3min加热,磁控管不能正常工作。B:工作原理调制器负高压脉冲一到,阴极和阳极之间激起微波振荡。阴极附件的自由电子,在飞向阳极过程中,由调制器提供的高压,使电子获得能量。又在恒定磁场的作用下,把自由电子获得的能量,传给微波振荡,使原本微弱的微波振荡强大起来。载波频率采用下列二种:S波段—(2900~3100)MHZ—10cm(波长)X波段—(9300~9500)MHZ—3cm(波长)5.4):工作状态判断:磁控管正常工作时,有稳定的阳极电流,所以;能够输出稳定的大功率微波,氖灯遇大功率微波辐射会发亮。这样;我们可以采用氖灯法、电流观察法、雷达性能监视器三种方法来判断磁控管工作状态。①电流法:a):电流值为规定值,磁控管工作正常。否则为不正常。②氖灯法:氖灯放在距收发机波导口10~15(cm)处,若氖灯发亮,说明正常。不发亮,管子不工作。③雷达性能监视器(后续章节介绍)5.5):磁控管保存及使用:由于磁化作用,磁控管保存有如下规定:木箱内,磁控管离铁磁体至少10cm,二个磁控管之间至少距离20cm。备用磁控管应经常轮流使用。5.3):老练“老练”是更换磁控管时,为确保设备安全,要进行的一个步骤。什么是“打火”磁控营空腔内为真空,如果空腔内有气体,高压会使气体电离,就会有负离子飞向阳极,形成阳极电流,这一现象称为“打火”。什么是“老练”气体一下子全部电离,就会有大量负离子飞向阳极,形成很大的阳极电流,会损伤阳极。逐步加高压,逐步电离,慢慢去除气体,可以避免对磁控管的伤害,这一过程称为老练,步骤如下:“老练”步骤a):先加灯丝电压半小时。b):再加较低的高压半小时或更长时间,之后加较高的电压。c):若在某电压灯火,退回先前的电压,一段时间后,再返回该电压,若再打火,则再退回,直到不打火,这样;电压慢慢向上升,直到额定值。老练前提:新管,6个月未用的旧管。三.特高压电源的三种开关发射开并、延时开关、门开关三种开关各自有不同的用处,三种开关同时合上、高压才能加到磁控管。1:3分钟延时开关:保护磁控管2:门开关:收发机箱的盖板没有合上,门开关断开,调制器没有特高压电源供电,不能发射。这样就确保了人员的安全。3:发射开关(雷达电源:off-Standby):由操作人员控制。开启雷达电源后,“预备”指示灯亮,延时开关,保证在发射开并合上3分钟后,再接通。第四节微波传输及天线系统天线系统实现了雷达微波信号的径向发射与接收,微波传输部件实现了天线与收发机的连接。微波传输及天线系统采用的器件是微波器件,有别于雷达的其他部分。下面我们予以介绍。1.组成及基本工作原理天线系统由天线、驱动电机、传动装置、船首线电路、方位同步发送机、波导等组成。各部分作用如下:1):驱动电机:通过传动装置,带动天线、船首线电路及方位同步发送机转动。天线约每3秒转一圈。2):方位同步发送机:将天线的转动角信号,送去显示器,使得显示器产生的扫描线,扫描线相对于固定方位圈0°刻度方向的夹角,与天线发射方向相对于实际船首线的夹角相同,如图示。3):船首线电路:将产生的船首线信号,送到显示器,使显示器显示出船首线时,恰为天线向实际船首线方向发射的时刻。如图示。4):天线通过波导,与收发机相连。2.波导雷达波导由铜制成的内部空心外形为矩形的金属管,天线由窄边开缝波导构成,微波传输也由波导完成,所以;我们首先讲解波导。1):采用波导的原因:天线发射与接收的信号,均为微波信号,微波信号不能用普通导线传输,这是因为微波信号频率太高的原因,下面我们分析之,并提出解决的方法。A:趋肤效应:由电磁场理论和天线理论知:频率f上升,导致电流集中在表面,中心无电流,相当于导电体积减少,电阻上升,电阻热损耗上升,同时;使辐射增加,这就是所谓趋肤效应。所以不能采用普通导线。1:采用波导传输信号:雷达波导由铜制成的内部空心外形为矩形的金属管,按边的尺寸分为3cm、10cm二种。采用波导后(见图),由电磁场理论知,电流在内表面,所以无辐射。又由于,内表面的面积,比普通导线的面积大很多,所以电阻热损耗很小。2:采用波导的若干问题2):波导不能进水,否则微波加热积水,使该处发热。在收发机入口处、波导接口处加入防水云母片。3):另由电磁场理论知:波导尺寸与电波波长成正比,损耗与电磁波的振荡模型有关。所以;3cm雷达采用波导,10cm雷达因波导太大改用同轴线。4):收发机天线之间的波导管,总长度不宜超过20米,整个波导系统的弯头不宜超过5个。3天线的方向性.天线由窄边开缝波导构成。这种天线,它辐射的电磁波,其空间分布是怎样的?下面;我们首先介绍天线方向性图这个基本概念,再介绍辐射电磁波的空间分布。1):天线方向性图:天线方向性图是表示辐射方向,与该方向辐射强度关系的图形。可用场强表示,也可用功率表示。雷达三维方向性图近似为细长的橄榄球。场强图中,最大值的0.707们的二个线段的夹角;或功率图中,最大值的0.5倍的二个线段的夹角称半功点宽度。方向性图可分为水平方向性图和垂直方向性图二种。2):水平波束宽度ӨH天线俯视图中,半功点宽度称为水平波束宽度。ӨH2°,一般ӨH为1°左右。3):垂直波束宽度Өv天线侧视图中,半功点宽度称为水平波束宽度。Өv=15°~30°防止船舶摇摆时,丢失目标。4):编转角方向性图中最大值方向与天线的辐射平面的法线方向的夹角称为编转角。编转角与发射频率有关,更换磁控管,编转角将改变。补充:隙缝波导天线的主瓣轴向与天线窗口法线方向之间约有3.1°-4.1°的偏差。在安装天线时应加以校正。应调船首线装置,使最大值方向与首线一致。5):根据电磁场理论:发射频率愈高,方向性愈尖锐。4:极化电磁波中的电场矢量的方向,称为极化。船舶雷达极化有下列三种:电场矢量沿水平方向振动的,称水平极化。电场矢量沿垂直方向振动的,称垂直极化。电波的电场矢量,作圆周旋转,称圆极化。理论分析及实验表明:海浪高0.25(m);水平极化海浪干扰最小。规定X波段采用水平极化(包括雷达,航标)。海浪高1~3(m);垂直极化海浪干扰最小。某些S波段采用垂直极化(主要是雷达)由电磁场理论知:圆极化波段对称物体,右旋转波变为左旋转,左旋波变为右旋波。雨雪,浮简,灯塔为对称物件。易知;使用圆极化可抗雨雪干扰,但易丢失对称目标。天线互易性:具有互易性的天线,发射和接收的电波在下列指标上必须相同,否则不能接收:a):载波频率b):极化(若是圆极化必须电场旋向相同)。规定:10cm雷达采用圆极化,3cm雷达一般采用水平极化。天线保养:雷达天线的辐射窗口暴露在外面,每个月应检查一次,如有灰尘粘在上面,应用清水冲洗掉。接收机框图及工作原理要点:1:船舶雷达探测要得到回波信号中什么物理量?2:怎样的电路组成可以实现从目标调制的微波波段的微弱回波信号中得到目标的信息?3:怎样使接收机接收回波性能良好?1:接收机框图及工作原理船用雷达的载波,采用微波波段,目标反射微波时,目标的回波强弱,是由回波信号的包络反映出来的。接收机的任务就是把包络检测出来。其框图如下图示。1):混频器混频器由A、B、C三部分组成:A:由速调管组成本机振动器(本振)B:晶体二极管组成混频器电路C:选频电路以上三部分完成混频的功能,也就是把接收信号的频率降低为中频信号。2):放大电路完成低噪放大中频信号的功能,雷达中频为:30MHz、45MHz、60MHz接收机三种。的机内噪声主要来源于中频放大器。3):检波电路:完成检出用来显示的视频信号的功能==========================海浪干扰====================================海浪或多或少存在,雨雪则不是这样==========知识点:=====海浪干扰与距离、工作波长、风向、极化、脉冲宽度===============知识点:=====海浪干扰定义===============知识点:=====海浪干扰抑制方法、操作注意事项===(CFAR===S波段=对数放大器=园极化===========================================================海浪控制电路(STC):要点:1:海浪的危害(简述)是什么?2:了解海浪回波概念是处理海浪问题的基础,浪回波概念具体是什么?3:处理海浪的方法是怎样的?4:处理海浪的方法及海浪干扰有什么特点?5:这些特点产生什么样的海浪干扰抑制措施?5:海浪控制电路(STC):1):海浪回波信号的概念:在屏幕上;以本船为中心,呈鱼鳞状,近距离强、远距离弱,来风方向强。2):海浪控制电路工作原理:用一个随时间按指数规律变化的电压去控制中放的增益,使中放的近距离增益大大减小,而随着距离的增加便逐渐恢复正常。3):效果这样;就能抑制近距离的很强的海浪干扰回波,而使明显的强物标突出出来,但对稍远距离上的目标没有影响。调STC钮,使不丢失近距离小目标为好。海浪干扰特点:海浪反射雷达电波,从而产生海浪干扰回波,形成屏上以本船周围6nmile~8nmile(风浪大时甚至达3nmile~10nmile)内的鱼鳞状闪亮斑点。强海浪为圆盘状亮斑回波。1.干扰回波分布在扫描中心周围,上风舷方向伸展得远且回波强,下风舷稍近一些。2.入射角大即垂直波束宽度宽或天线高度高,则海浪回波强。3.水平波束宽度大,脉冲宽度宽,则反射面积大,回波就强。4.根据电磁场理论;垂直极化波比水平极化产生的海浪回波要强得多。在X和S
本文标题:航海雷达与ARPA
链接地址:https://www.777doc.com/doc-2052638 .html