您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 19.9(1)勾股定理
LOGO19.9(1)勾股定理CBA受台风麦莎影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高?4米3米情景引入邮票赏析这是1955年希腊曾经发行的纪念一位数学家的邮票。2002年世界数学家大会会标在中国古代,人们把弯曲成直角的手臂的上半部分称为勾,下半部分称为股。我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.勾股勾股定理的证明证明方法1:数方格图甲图乙A的面积B的面积C的面积448ABCSA+SB=SCC图甲1.观察图甲,小方格的边长为1.⑴正方形A、B、C的面积各为多少?⑵正方形A、B、C的面积有什么关系?ABCC图乙2.观察图乙,小方格的边长为1.⑴正方形A、B、C的面积各为多少?91625SA+SB=SC⑵正方形A、B、C的面积有什么关系?448ABCSA+SB=SC图甲图甲图乙A的面积B的面积C的面积ABC图乙2.观察图乙,小方格的边长为1.91625SA+SB=SC⑵正方形A、B、C的面积有什么关系?448ABCSA+SB=SC图甲图甲图乙A的面积B的面积C的面积abcabcABCC图乙SA+SB=SCSA+SB=SC图甲abcabc3.猜想a、b、c之间的关系?a2+b2=c2勾股定理的证明证明方法2:拼三角形利用拼图来验证勾股定理:cab1、准备四个全等的直角三角形(设直角三角形的两条直角边分别为a,b,斜边为c);2、你能用这四个直角三角形拼成一个以斜边c正方形吗?拼一拼试试看?3.你能否就你拼出的图说明a2+b2=c2?cabcabcabcabcab∵c2=4•ab/2+(b-a)2=2ab+b2-2ab+a2=a2+b2∴a2+b2=c2大正方形的面积可以表示为;也可以表示为c24•ab/2-(b-a)2cabcabcabcab∵(a+b)2=c2+4•ab/2a2+2ab+b2=c2+2ab∴a2+b2=c2大正方形的面积可以表示为;也可以表示为(a+b)2c2+4•ab/2勾股定理(毕达哥拉斯定理)(gou-gutheorem)如果直角三角形两直角边分别为a,b,斜边为c,那么即直角三角形两直角边的平方和等于斜边的平方.222cbaac勾弦b股两千多年前,古希腊有个哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,1955勾股世界国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。勾股定理的证明证明方法3:赵爽弦图赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。cabcab勾股定理的证明证明方法4:美国总统加菲尔德的证明方法美国第二十任总统伽菲尔德的证法在数学史上被传为佳话人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。有趣的总统证法在直角三角形中,已知两边可以求第三边例1如图,在Rt△ABC中,BC=24,AC=7,求AB的长。在Rt△ABC中,∠C=90°222BCACAB解:B24AC76252472225AB如果将题目变为:在Rt△ABC中,AB=25,BC=24,求AC的长呢?2524例2已知等边三角形ABC的边长是6cm,(1)求高AD的长;(2)S△ABCABCD解:(1)∵△ABC是等边三角形,AD是高在Rt△ABD中,∠ADB=90°222BDABADcmAD3327936ADBCSABC21)2()(39336212cm321BCBD例3如图,∠ACB=∠ABD=90°,CA=CB,∠DAB=30°,AD=8,求AC的长。解:∵∠ABD=90°,∠DAB=30°∴BD=AD=421在Rt△ABD中,∠ABD=90°484822222BDADAB在Rt△ABC中,CBCACBCAAB且,222242122222ABCACAAB62AC又AD=8ABCD30°81.求下列图中表示边的未知数x、y、z的值.①81144z②③625576144169比一比看看谁算得快!2.求下列直角三角形中未知边的长:可用勾股定理建立方程.方法小结:8x171620x125x1、如图,一个高3米,宽4米的大门,需在相对角的顶点间加一个加固木条,则木条的长为()A.3米B.4米C.5米D.6米C342、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为()ABCA.50米B.120米C.100米D.130米130120?A练习1.在△ABC中,∠C=90°.(1)若a=6,c=10,则b=;(2)若a=12,b=9,则c=;3.如图,在△ABC中,C=90°,CD为斜边AB上的高,你可以得出哪些与边有关的结论?CABDmnh815(3)若c=25,b=15,则a=;202.等边三角形边长为10,求它的高及面积。ba如图,在△ABC中,AB=AC,D点在CB延长线上,求证:AD2-AB2=BD·CDABCD证明:过A作AE⊥BC于EE∵AB=AC,∴BE=CE在Rt△ADE中,∠AED=90°AD2=AE2+DE2在Rt△ABE中,∠AEB=90°AB2=AE2+BE2∴AD2-AB2=(AE2+DE2)-(AE2+BE2)=DE2-BE2=(DE+BE)·(DE-BE)=(DE+CE)·(DE-BE)=BD·CD千古第一定理数与形的第一定理导致第一次数学危机数学由计算转变为证明是第一个不定方程毕达哥拉斯定理勾股(商高)定理LOGO总结校本作业P112---113
本文标题:19.9(1)勾股定理
链接地址:https://www.777doc.com/doc-2054368 .html