您好,欢迎访问三七文档
1.2工厂每月生产A、B、C三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.表1-23产品资源ABC资源限量材料(kg)1.51.242500设备(台时)31.61.21400利润(元/件)101412根据市场需求,预测三种产品最低月需求量分别是150、260和120,最高月需求是250、310和130.试建立该问题的数学模型,使每月利润最大.1.3建筑公司需要用6m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:表1-24窗架所需材料规格及数量型号A型号B每套窗架需要材料长度(m)数量(根)长度(m)数量(根)A1:1.72B1:2.72A2:1.33B2:2.03需要量(套)200150问怎样下料使得(1)用料最少;(2)余料最少.1.4某企业需要制定1~6月份产品A的生产与销售计划。已知产品A每月底交货,市场需求没有限制,由于仓库容量有限,仓库最多库存产品A1000件,1月初仓库库存200件。1~6月份产品A的单件成本与售价如表1-25所示。表1-25月份123456产品成本(元/件)销售价格(元/件)300330320360360300350340350420410340(1)1~6月份产品A各生产与销售多少总利润最大,建立数学模型;(2)当1月初库存量为零并且要求6月底需要库存200件时,模型如何变化。1.5某投资人现有下列四种投资机会,三年内每年年初都有3万元(不计利息)可供投资:方案一:在三年内投资人应在每年年初投资,一年结算一次,年收益率是20%,下一年可继续将本息投入获利;方案二:在三年内投资人应在第一年年初投资,两年结算一次,收益率是50%,下一年可继续将本息投入获利,这种投资最多不超过2万元;方案三:在三年内投资人应在第二年年初投资,两年结算一次,收益率是60%,这种投资最多不超过1.5万元;方案四:在三年内投资人应在第三年年初投资,一年结算一次,年收益率是30%,这种投资最多不超过1万元.投资人应采用怎样的投资决策使三年的总收益最大,建立数学模型.
本文标题:线形规划数学模型
链接地址:https://www.777doc.com/doc-2056904 .html