您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 讲座02-待定系数法
高邮中学2012届高三数学专题讲座2(培优)2011.11第1页共11页待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。(表示恒等于)待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。待定系数法是中学数学中的一种重要方法,它在平面解析几何中有广泛的应用.(一)求直线和曲线的方程例1过直线x-2y-3=0与直线2x-3y-2=0的交点,使它与两坐标轴相交所成的三角形的面积为5,求此直线的方程.【解】设所求的直线方程为(x-2y-3)+λ(2x-3y-2)=0,整理,得依题意,列方程得于是所求的直线方程为8x-5y+20=0或2x-5y-10=0.【解说】(1)本解法用到过两直线交点的直线系方程,λ是待定系数.(2)待定系数法是求直线、圆和圆锥曲线方程的一种基本方法.高邮中学2012届高三数学专题讲座2(培优)2011.11第2页共11页例2如图2-9,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线C上的任一点到l2的距离与到点N的距离相等.若系,求曲线C的方程.【解】如图2-9,以l1为x轴,MN的垂直平分线为y轴,建立直角坐标系.由已知,得曲线C是以点N为焦点、l2为准线的抛物线的一段,其中点A、B为曲线C的端点.设曲线C的方程为y2=2px,p>0(x1≤x≤x2,y>0).其中,x1、x2分别是A、B的横坐标,p=|MN|.从而M、N解之,得p=4,x1=1.故曲线C的方程为y2=8x(1≤x≤4,y>0).(二)探讨二元二次方程(或高次方程)表示的直线的性质例3已知方程ax2+bxy+cy2=0表示两条不重合的直线L1、L2.求:(1)直线L1与L2交角的两条角平分线方程;(2)直线L1与L2的夹角的大小.【解】设L1、L2的方程分别为mx+ny=0、qx+py=0,则ax2+bxy+cy2=(mx+ny)(qx+py).从而由待定系数法,得高邮中学2012届高三数学专题讲座2(培优)2011.11第3页共11页a=mq,b=mp+nq,c=np.(1)由点到直线的距离公式,得所求的角平分线方程为即(m2+n2)(qx+py)2=(q2+p2)(mx+ny)2,化简、整理,得(nq-mp)[(nq+mp)x2+2(np-mq)xy-(nq+mp)y2]=0.∵L1、L2是两条不重合的直线∴b2-4ac=(mp+nq)2-4mnpq=(mp-nq)2>0.即mp-nq≠0.从而(nq+mp)x2+2(np-mq)xy-(nq+mp)y2=0.把mq=a,mp+nq=b,np=c代入上式,得bx2+2(c-a)xy-by2=0.即为所求的两条角平分线方程.(2)显然当mq+np=0,即a+c=0时,直线L1与L2垂直,即夹角为90°.当mq+np≠0即a+c≠0时,设L1与L2的夹角为α,则【解说】一般地说,研究二元二次(或高次)方程表示的直线的性质,用待定系数法较为简便.(三)探讨二次曲线的性质1.证明曲线系过定点例4求证:不论参数t取什么实数值,曲线系(4t2+t+1)x2+(t+1)y2+4t(t+1)y-(109t2+21t+31)=0都过两个定点,并求这两个定点的坐标.【证明】把原方程整理成参数t的方程,得高邮中学2012届高三数学专题讲座2(培优)2011.11第4页共11页(4x2+4y-109)t2+(x2+y2+4y-21)t+x2+y2-31=0.∵t是任意实数上式都成立,【解说】由本例可总结出,证明含有一个参数t的曲线系F(x,y,t)=0过定点的步骤是:(1)把F(x,y,t)=0整理成t的方程;(2)因t是任意实数,所以t的各项系数(包括常数项)都等于零,得x、y的方程组;(3)解这个方程组,即得定点坐标.2.求圆系的公切线或公切圆例5求圆系x2+y2-2(2m+1)x-2my+4m2+4m+1=0(m≠0)的公切线方程.【解】将圆系方程整理为[x-(2m+1)]2+(y-m)2=m2(m≠0)显然,平行于y轴的直线都不是圆系的公切线.设它的公切线方程为y=kx+b,则由圆心(2m+1,m)到切线的距离等于半径|m|,得从而[(1-2k)m-(k+b)]2=m2(1+k2),高邮中学2012届高三数学专题讲座2(培优)2011.11第5页共11页整理成m的方程,得(3k2-4k)m2-2(1-2k)(k+b)m+(k+b)2=0.∵m取零以外的任意实数上式都成立,【解说】由本例可总结出求圆系F(x,y,m)=0的公切线方程的步骤是:(1)把圆系方程化为标准方程,求出圆心和半径;(2)当公切线的斜率存在时,设其方程为y=kx+b,利用圆心到切线的距离等于半径,求出k、b、m的关系式f(k,b,m)=0;(3)把f(k,b,m)=0整理成参数m的方程G(m)=0.由于m∈R,从而可得m的各项系数(包括常数项)都等于零,得k、b的方程组;(4)解这个方程组,求出k、b的值;(5)用同样的方法,可求出x=a型的公切线方程.3.化简二元二次方程例6求曲线9x2+4y2+18x-16y-11=0的焦点和准线.【分析】把平移公式x=x′+h,y=y′+k,代入原方程化简.【解】(略).例7.已知函数y=mxxnx22431的最大值为7,最小值为-1,求此函数式。【分析】求函数的表达式,实际上就是确定系数m、n的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”。高邮中学2012届高三数学专题讲座2(培优)2011.11第6页共11页【解】函数式变形为:(y-m)x2-43x+(y-n)=0,x∈R,由已知得y-m≠0∴△=(-43)2-4(y-m)(y-n)≥0即:y2-(m+n)y+(mn-12)≤0①不等式①的解集为(-1,7),则-1、7是方程y2-(m+n)y+(mn-12)=0的两根,代入两根得:1120497120()()mnmnmnmn解得:mn51或mn15∴y=5431122xxx或者y=xxx224351此题也可由解集(-1,7)而设(y+1)(y-7)≤0,即y2-6y-7≤0,然后与不等式①比较系数而得:mnmn6127,解出m、n而求得函数式y。【注】在所求函数式中有两个系数m、n需要确定,首先用“判别式法”处理函数值域问题,得到了含参数m、n的关于y的一元二次不等式,且知道了它的解集,求参数m、n。两种方法可以求解,一是视为方程两根,代入后列出m、n的方程求解;二是由已知解集写出不等式,比较含参数的不等式而列出m、n的方程组求解。本题要求对一元二次不等式的解集概念理解透彻,也要求理解求函数值域的“判别式法”:将y视为参数,函数式化成含参数y的关于x的一元二次方程,可知其有解,利用△≥0,建立了关于参数y的不等式,解出y的范围就是值域,使用“判别式法”的关键是否可以将函数化成一个一元二次方程。例8.设椭圆中心在(2,-1),它的一个焦点与短轴两端连线互相垂直,且此焦点与长轴较近的端点距离是10-5,求椭圆的方程。【分析】求椭圆方程,根据所给条件,确定几何数据a、b、c之值,问题就全部解决了。设a、b、c后,由已知垂直关系而联想到勾股定理建立一个方程,再将焦点与长轴较近端点的距离转化为a-c的值后列出第二个方程。【解】设椭圆长轴2a、短轴2b、焦距2c,则|BF’|=a∴abcaabac2222222105()解得:ab105∴所求椭圆方程是:x210+y25=1高邮中学2012届高三数学专题讲座2(培优)2011.11第7页共11页也可有垂直关系推证出等腰Rt△BB’F’后,由其性质推证出等腰Rt△B’O’F’,再进行如下列式:bcacabc105222,更容易求出a、b的值。【注】圆锥曲线中,参数(a、b、c、e、p)的确定,是待定系数法的生动体现;如何确定,要抓住已知条件,将其转换成表达式。在曲线的平移中,几何数据(a、b、c、e)不变,本题就利用了这一特征,列出关于a-c的等式。一般地,解析几何中求曲线方程的问题,大部分用待定系数法,基本步骤是:设方程(或几何数据)→几何条件转换成方程→求解→已知系数代入。例9.是否存在常数a、b、c,使得等式1·22+2·32+…+n(n+1)2=nn()112(an2+bn+c)对一切自然数n都成立?并证明你的结论。(89年全国高考题)【分析】是否存在,不妨假设存在。由已知等式对一切自然数n都成立,取特殊值n=1、2、3列出关于a、b、c的方程组,解方程组求出a、b、c的值,再用数学归纳法证明等式对所有自然数n都成立。【解】假设存在a、b、c使得等式成立,令:n=1,得4=16(a+b+c);n=2,得22=12(4a+2b+c);n=3,得70=9a+3b+c。整理得:abcabcabC2442449370,解得abc31110,于是对n=1、2、3,等式1·22+2·32+…+n(n+1)2=nn()112(3n2+11n+10)成立,下面用数学归纳法证明对任意自然数n,该等式都成立:假设对n=k时等式成立,即1·22+2·32+…+k(k+1)2=kk()112(3k2+11k+10);当n=k+1时,1·22+2·32+…+k(k+1)2+(k+1)(k+2)2=kk()112(3k2+11k+10)+(k+1)(k+2)2=kk()112(k+2)(3k+5)+(k+1)(k+2)2=()()kk1212(3k2+5k+12k+24)=()()kk1212[3(k+1)2+11(k+1)+10],也就是说,等式对n=k+1也成立。综上所述,当a=8、b=11、c=10时,题设的等式对一切自然数n都成立。【注】建立关于待定系数的方程组,在于由几个特殊值代入而得到。此种解法中,也体现了方程思想和特殊值法。对于是否存在性问题待定系数时,可以按照先试值、再猜想、高邮中学2012届高三数学专题讲座2(培优)2011.11第8页共11页最后归纳证明的步骤进行。本题如果记得两个特殊数列13+23+…+n3、12+22+…+n2求和的公式,也可以抓住通项的拆开,运用数列求和公式而直接求解:由n(n+1)2=n3+2n2+n得Sn=1·22+2·32+…+n(n+1)2=(13+23+…+n3)+2(12+22+…+n2)+(1+2+…+n)=nn2214()+2×nnn()()1216+nn()12=nn()112(3n2+11n+10),综上所述,当a=8、b=11、c=10时,题设的等式对一切自然数n都成立。例10.有矩形的铁皮,其长为30cm,宽为14cm,要从四角上剪掉边长为xcm的四个小正方形,将剩余部分折成一个无盖的矩形盒子,问x为何值时,矩形盒子容积最大,最大容积是多少?【分析】实际问题中,最大值、最小值的研究,先由已知条件选取合适的变量建立目标函数,将实际问题转化为函数最大值和最小值的研究
本文标题:讲座02-待定系数法
链接地址:https://www.777doc.com/doc-2063129 .html