您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 六年级上册数学第二单元分数乘法知识点总结
六年级上册数学第二单元分数乘法知识点总结(一)、分数乘法的意义。(只看第二个因数)1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简便运算。例如:23×3,表示:3个23相加是多少,还表示23的3倍是多少。2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。例如:6×512,表示:6的512是多少。27×78,表示:27的78是多少。3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。例如:512×123,表示:512的123倍是多少。(二)、分数乘法的计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。注:(1)为了计算简便能约分的可先约分再计算。(分母和整数约分)(2)约分是用整数和下面的分母约掉最大公因数。(计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b1时,ca.一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b1时,ca(b≠0).一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a.注:1.在进行因数与积的大小比较时,要注意因数为0时的特殊情况。2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。(希望同学们好好理解)(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)、解决实际问题。1分数应用题一般解题步行骤。(1)找出含有分率的关键句。(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。(4)根据已知条件和问题列式解答。2.乘法应用题有关注意概念。(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。(7)乘法应用题中,单位“1”是已知的。(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。(9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。单位“1”×分率=比较量;比较量÷分率=单位“1”(10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。(11).单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。(12)分率与量要对应。①多的对应量对多的分率;②少的对应量对少的分率;③增加的对应量对增加的分率;④减少的对应量对减少的分率;⑤提高的对应量对提高的分率;⑥降低的对应量对降低的分率;⑦工作总量的对应量对工作总量的分率;⑧工作效率的对应量对工作效率的分率;⑨部分的对应量对部分的分率;⑩总量的对应量对总量的分率;例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)方法:单位“1”的数量×对应分率=对应数量。2、分数的连乘。找到每一个分率的单位“1”。(六)、倒数(多出判断题,根据老师讲解的那三条判断)倒数的意义:乘积为1的两个数互为倒数。1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。②求整数的倒数:整数分之1。③求带分数的倒数:先化成假分数,再求倒数。④求小数的倒数:先化成分数再求倒数。4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。5、任意数a(a≠0),它的倒数为a1;非零整数a的倒数为a1;分数ab的倒数是ba。6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。假分数的倒数小于或等于1。带分数的倒数小于1。
本文标题:六年级上册数学第二单元分数乘法知识点总结
链接地址:https://www.777doc.com/doc-2077408 .html